Supporting Classroom Activities toward the Ubiquitous Learning Environment

Hiroaki Ogata
Dept. of Information Science and Intelligent Systems,
Faculty of Engineering,
University of Tokushima, Japan
University of Tokushima, Japan

- 7,800 students and 2,600 faculty members
- 5 Faculties: Medicine, Dentistry, Pharmaceutical Sciences, Integrated Arts and Sciences, and Engineering.
Research & Practice toward Ubiquitous Learning

- Practice
 u-Campus project using PDA
 Advanced e-Learning

- Research
 CSUL: Computer Supported Ubiquitous Learning Language Learning
u-Campus

- Ubiquitous campus project in Tokushima University (u-Learning)
- Technology enhanced campus with PDAs, mobile phones, and wireless networks.
- HP grant for mobile technology in Education 2004 ($110,000 for 1 year)
- US$900,000 for 3 years from MEXT, Japan
Japanese proverbs

- Those who know most speak least.
 (能ある鷹は爪を隠す)
- Know everything by hearing one thing.
 [Have a very perceptive mind.]
 (一を聞いて十を知る)
- Regard one's teachers with deep veneration.
 (師を敬う)
- Japanese students are very quiet and passive in classrooms.
- The main aim of u-Campus is making students more active inside and outside class.
Objectives of u-Campus

- Making students more active and interactive;
- Providing right thing at right time and right place through seamless learning.
- Fostering collaborative learning by knowledge awareness,
- Making e-portforlio for authentic evaluation,
- Reducing time consuming tasks: attendance taking, report collection etc
Seamless Learning

- between inside and outside classroom
- between one-way teaching and interactive learning
- between teacher-centered classroom and learner-centered learning
- between the virtual (info) world and the real world

Inside classroom → u-Learning → Outside classroom
Equipment

- PDA: HP 46, NEC 100, Fujitsu 100, Sharp Linux Zaurus 60, Toshiba 30
- Tablet PC; 20 HP tablet PC
- Wireless access: in our campus
Mobile phone vs. PDA in Japan

- i-mode access
- Narrow band
- Students pay
- Univ. not pay
- Small screen
- Not-easy to develop software
- WiFi access
- Broad band
- Univ. pays for infra.
- Students not pay
- 640x480 screen
- Easy software dev.
- A lot of free software
Design of learning environment using mobile devices

Mobile devices

- Portable & low-cost
- Slow CPU & small memory
- Personal
- Connectable
- Multi-purposes

Software

- Persistent
- Simple
- Adaptive
- Collaborative
- Seamless learning
System configuration of u-Learning
Functions inside vs. outside classroom.

<table>
<thead>
<tr>
<th></th>
<th>Synchronous communication</th>
<th>Asynchronous communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside classroom</td>
<td>Attendance taking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Response system</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data distribution and gathering</td>
<td></td>
</tr>
<tr>
<td>Outside classroom</td>
<td>Video streaming</td>
<td>Video on demand</td>
</tr>
<tr>
<td></td>
<td>Response system</td>
<td>Data gathering activities</td>
</tr>
<tr>
<td></td>
<td>Data distribution and gathering</td>
<td></td>
</tr>
</tbody>
</table>
u-Learning
Classroom with PDAs (Case 1)

- 50 master course students in Computer Science Department
- Intelligent CAI course
- 65 PDAs, Wireless LAN, Projector, Camera
- Real time broadcasting, and recording
- Access video on demand after the class
アンケートを見る

表示するコースとアンケートを選んでください。

アンケート情報
コース: CAI2
Survey: 1-2

1. RFIDは何の略ですか？
 ○ Rapid Frequency Identification
 ○ Radio Frequently Identification
 ○ Radio Frequency Identification

2. RFIDタグの特徴で正しいのはどれ？
 ○ 非接触でタグから情報を読める。
 ○ 複数同時に読み取り可能。
 ○ 通信距離は100m以上。
2. RFIDタグの特徴で正しいのはどれ？

- 非接触でタグから情報を読める。
- 通信距離は100m以上。
- 検出同時読み取りが不可能。

Option

1. RFIDは何の略は？

- Radio Frequency Identification
- Rapid Frequency Identification
- Radio Frequency Identification
Case 2: Discrete mathematics and graph theory

- The department of information science and intelligent systems has started to use the U-learning system for 76 students of the 1st year.
- There are 70 men and 6 women in this group. We are using this equipment in:
 - Taking attendance
 - Response system
 - Video streaming
Some relevant data

- % of PC utilization
 - before the 1st year (21\%), between the 1st and the 2nd year (22\%), and after the 2nd year (57\%)

- % of PDA
 - from the beginning (88\%), between the 1st and the 2nd year (12\%)

- Input method used by the system
 - handwritten (1\%), alphabetical characters (90\%) and hiragana (9\%)

- do you use a PDA after classes?
 - Yes(55\%), No(45\%)
Case 3: English I

- English teacher is from USA.
- reading comprehension class for 36 students of the 1st year
- 9 men and 27 women
- % of PDA from the beginning (94%), between the 1st and the 2nd year (6%)
- The system is used to learn vocabulary and perform small tests
- Students upload sound files containing their own pronunciation. (data gathering activity)
Comments from students

- The system makes fast the processes of attendance and evaluation
- It was possible to check the attendance at the time of entering the class, it does not waste time in vain
- It was possible to do a test in your own pace
- It was a pleasure to attend this class
- It is easy for the professor to perform the attendance process within the system
- It was very interesting system
- I am not sleepy nor bored in this class
Student's comments

☐ The system makes the verification of attendance very simple
☐ student can ask and answer questions whenever they need
☐ It is easy to identify my own errors
☐ It is not necessary to take notes depending of the situation
☐ It is possible to receive an interesting class
☐ This is an interesting framework
Points to be improved

- It was difficult to make WiFi Network connection. (because of the security: WPA + Tkip)
- The system some times operates well some times not because of overload of the server and the network.
- The battery problem needs to be solved.
- Students could not record voice clearly.
Comments from the teachers

The good

☐ Students can record their own voice
☐ Students can verify their own records and their attendance state.
☐ When the PDA is used weekly the acknowledge of its operation is acquired
☐ The system increases the way of teaching
Comments from the teachers (2)

The bad

☐ There are WiFi connection problems
☐ Battery problems
☐ It makes upset the user specially when a problem appears and the IT specialist is not there
☐ It makes difficult to walk in the classroom because there are many cables in the floor
☐ Making online the contents of a quiz is a little bit difficult.
Research level

- CSUL (Computer Supported Ubiquitous Learning)
- Prototype system for Language Learning
CSUL (Computer Supported Ubiquitous Learning)

- Be coined for everyday learning supported by ubiquitous computing technologies, which are embedded and invisible computing-devices and networks.

Back to real world!
What’s CSUL from the tech.?

One of learning theories for CSUL

- Authentic Learning
 Learning from what happens in the real world.

- Authentic language learning
 Vocabulary is learnt not only inside schools but also outside schools.

System development

1. TANGO: Tag Added Learning Objects system for vocabulary learning
2. JAPELAS: Japanese Polite-Expressions Learning Assisting System
3. CLUE: Collaborative Learning support-system in Ubiquitous-computing Environments
4. LOCH: Supporting informal language learning outside the classroom with handhelds

The Japanese meaning of “tango” is “word” in English.
1. TANGO: Learning Vocabularies

- Leaning environment
 the room where some of objects have RFID tags.
- Information on the objects
 Name, Pronunciation, Expressions, Q&A.
- Reading RFID tags, the system detects the objects
 around the learner, and provides a suitable question
 to the learner in order to link vocabulary and real
 objects.
- Learners can annotate to the objects, and share
 them. This promotes collaborative learning through
 making shared-understandings about objects.
RFID (Radio Frequency Identification) tag

- Read/write electronic storage technology
- Non-contact, and non-line-of-sight for communication
- Operate without a separate external power source
- Robust constructions available.
- Will replace barcode.
- Auto ID center, Ubiquitous ID center

We assume some of the object in the real world have RFID tags, and computers can understand the objects around themselves.
-chip by Hitachi Co. in Japan

- Size: 0.4 mm(D,W), 0.06mm(H)
- Data: 128 bit
- Athena built-in
- Enable invisible computing
RFID tag RFID reader / writer
Implementation

- PDA, Toshiba Genio-e 550C
- Wireless LAN network (IEEE 802.11b)
- RFID tag (Omron, V720)
- MS Embedded Visual Basic
Ubiquitous Language Learning room

Where is the microwave?
Where is the rice cooker?

“Microwave” is also used as a verb

Voice

Hint

Scan

Read comment

Next question

Exit
Experimentation

- User: six high-school students (age: 16)
- Question: 10 questions
 - Ex: Where is the CD boom box?
 - If the user scan its tag, then get the point.
- Ubiquitous LL game:
 - 5 min. for each user
 - Compete the score.
With TANGO & trans. HMD, you can see objects in the world as if you were in English / Japanese environment.
2. JAPELAS

- Four levels of polite expressions in Japanese language: casual, basic, formal, more formal.

- The level changes according to hyponymy, social distance, and formality of the situation.

- Every user has a PDA and exchange personal information via IrDA, e.g., like Active Badge. Then, the system tells the appropriate level of politeness in the situation.

- JAPELAS also supports participatory simulations in language learning courses.
<table>
<thead>
<tr>
<th>Level of politeness</th>
<th>カナ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level</td>
<td>Example (eat)</td>
</tr>
<tr>
<td>Casual</td>
<td>くう．</td>
</tr>
<tr>
<td>Basic</td>
<td>食 (た)べる．</td>
</tr>
<tr>
<td>Formal</td>
<td>召し上がる、頂く口にする。</td>
</tr>
<tr>
<td>More formal</td>
<td>お召し上がりになる、ご賞味させて頂く</td>
</tr>
</tbody>
</table>

Factors for changes in politeness

<table>
<thead>
<tr>
<th>Factor</th>
<th>Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyponymy</td>
<td>affiliation, age, position (social status)</td>
</tr>
<tr>
<td>Social distance</td>
<td>colleague, friends, relatives</td>
</tr>
<tr>
<td>Formality</td>
<td>ceremony, banquet, meeting (situation)</td>
</tr>
</tbody>
</table>
Implementation

- PDA, Toshiba Genio-e 550C
- IrDA (Infrared Data Association)
- RFID tag (Omron, V720)
- MS Embedded Visual C++
Overview of Japanese Polite Exp. Learning

Name: X
Grade: M1
Age: 25

Name: Y
Grade: M2
Age: 24

Name: Z
Grade: UG
Age: 22

Input: 食べる

Formal

Casual

くう.

召し上がる．
Interface of JAPELAS

Settings Dictionary Main
Experimentation

- User: 18 high-school students average age: 16.94
- Polite expression: 10 sentences
- Role: myself, elder friend, younger friend, teacher, father, brother, etc.
- Time: 30 min.
3. CLUE

- Domain:
- Japanese language learning for overseas students
- English learning for Japanese students
Features of CLUE

- Each learner has a his/her own PDA, and shares interaction experiences in everyday life with the contexts (location, and time).
- According to the learner’s context, the system provides the right information in the right form at the right place at the right time.
- The system provides knowledge awareness for inducing collaboration and facilitating knowledge sharing.
Interactions in a campus life
RTRP Learning

Ubiquitous learning + Personalization

☐ Any information ☐ Right information

☐ In any form (media) ☐ In right form

☐ At any time ☐ At right time

☐ At any place ☐ At right place

KA map

- Visualize objects in the map and expressions as educational materials,
- Visualize the links between expressions and learners to induce collaboration,
- Recommend appropriate collaborators to discuss about the expression.
Implementation

- PDA, Toshiba Genio-e 550C
- Wireless LAN
- GPS Unit (Empex, PokeNavi 508PC)
- Personal java, Embedded Visual C++, Embedded Visual Basic
User Interface
4. LOCH

- Supporting informal language learning outside the classroom with handhelds
- Location awareness service for the foreign students who are learning Japanese language in order to enhance the adaptation of knowledge learned in the class.
- Teacher gives some tasks to the students.
- The students go around with PDA, PHS (108kbps) and GPS, and complete the tasks while asking a question in Japanese.
- The teacher gives instruction during the trip.
- After the trip, students and teacher make a reflection for sharing knowledge.
Japanese lang. course

- Overseas students enrolled in the Japanese language intensive course at Tokushima University.
- 7 students (2 women / 5 men).
- 20 ~ 35 years old.
- From: Korea, Bangladesh, China, Peru, Philippines and Thailand.
- Different level of expertise in the use of computer devices.
Tasks

- The teacher scheduled tasks such as:
 - Touristic information stand in Tokushima JR Station -> ask about the places you can visit in one day and the price.
 Record the answer and send it back.

 - Awaodori Kaikan -> ask about the price and schedule for the rope way.
 Record the music of the Awaodori and *take pictures* of the souvenirs displayed in the shop.

- Students go around under the teacher’s guidance.
LOCH system (cont.)

• Students location interface.

ONE DAY TRIP

Please select display "all" to see the position of all the users at the same time. For displaying the position history of only one user, please select his/her username.

Display: [All]
Giving a task
Ask the way to the Japanese woman...
Ask the way, again, to a Japanese woman
Once more...
And more...
Here you are…
Awa-Odori museum.
Teacher can monitor learner’s place.
Teacher gives advices and ask questions.
Students took pictures and record voices.
Reflection.
Table 1: Results of the questionnaire

<table>
<thead>
<tr>
<th>No.</th>
<th>Question</th>
<th>Ave.</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>Do you think that the one day trip with PDA was exciting?</td>
<td>4.9</td>
<td>0.4</td>
</tr>
<tr>
<td>Q2</td>
<td>Do you think the PDA was easy to use?</td>
<td>3.3</td>
<td>1.2</td>
</tr>
<tr>
<td>Q3</td>
<td>Was the PDA helpful when you found some troubles completing the tasks?</td>
<td>4.4</td>
<td>0.5</td>
</tr>
<tr>
<td>Q4</td>
<td>Do you think the system was easy to use?</td>
<td>4.0</td>
<td>1.1</td>
</tr>
<tr>
<td>Q5</td>
<td>Would you like to use the system again?</td>
<td>5.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Findings of interest

- Students have an active participation in real life situations.
- Knowledge learned in the course became more available.
- Sharing the students’ strategies in discussion.
- Students carry out the tasks without anxiety about getting lost.
Additional Information

- WMTE
- G1:1
WMTE2005

- 3rd IEEE International Workshop on WMTE (Wireless and Mobile Technologies in Education)
- November 28-30, 2005, Tokushima, Japan
- PC chair, Mike Sharples (U. of Nottingham, UK) and me. (Acceptance rate: 12%)
- Invited speakers:
 - Gerhard Fisher, L3D, CU, USA
 - Claire O'Malley, UN, UK
 - Ken Sakamura, U. of Tokyo, Japan
Banquet 1: Dancing
Banquet 2: Wearable PC fashion show
G1:1 research initiatives

- International Researchers Network on one to one technology enhanced learning
- http://www.g1to1.org
- Members are from more than 15 countries.
- A social network, not a formal organization.
What is G1:1?

- Members having extensive connectivity to Kaleidoscope, ISLS, APSCE, IEEE, AIED, mLearn, and some SIGs

- Past events were directly or indirectly supported by EU, NSF of USA, and NSC of Taiwan, HP Japan.
What is 1:1 TEL?

One-to-one technology enhanced learning refers to learning in which every student is equipped with at least one wireless portable computing devices with Internet access and communication capabilities.
Events in 2003 & 2005

1st G1:1 Workshop
- Taiwan
- 6 international participants
- called Global Public-Private Partnership Platform (G4P) meeting

2nd G1:1 Workshop
- Taiwan
- more international participants
- prior to WMTE2004
Events in 2005

1. 3rd G1:1 Workshop (prior to CSCL), Taiwan
 (Jeremy Roschelle, Charles Patton)

2. G1:1 Panel in CSCL, Taiwan
 (Tak-Wai Chan, Ulrich Hoppe)

3. G1:1 Panel in IEEE ICALT, Taiwan
 (Kinshuk)

4. Panel in Kaleidoscope Symposium, Germany
 (Nicolas Balacheff, Ulrich Hoppe)
Events in 2005 (cont’d)

5. Panel in Knowledge Building Summer Institute, Canada
 (Marlene Scardamalia, Mary Lamon)

6. 4th G1:1 Workshop (prior to mLearn), South Africa
 (Mike Sharples, Charles Patton, Tom Brown, Herman van der Merwe)

7. 5th G1:1 Workshop (prior to WMTE), Japan
 (Kinshuk, Hiroaki Ogata)

8. G1:1 Panel in ICCE, Singapore
 (Chee-Kit Looi, Michael Jacobson)
Events in 2006 (planning)

1. G1:1 event, USA (prior to AERA)
 (Jeremy Rocschelle)
2. G1:1 event, Taiwan (prior to ITS)
 (Tak-Wai Chan)
3. G1:1 event, Greece, (prior to WMTE2006)
 (Kinshuk)
4. G1:1 event, Netherlands, (prior to ICALT2006)
 (Kinshuk)
5. G1:1 event, Canada, (prior to MLearn2006)
 (Rory McGreal)
6. G1:1 event, Beijing, (prior to ICCE2006)
 (Ronghuai Huang)
Thank you, HP!!

mailto:ogata@is.tokushima-u.ac.jp