Algorithms and Accuracy

in the HP-35

A lot goes on in that little machine when it's com-

puting a transcendental function.

By David S. Cochran

HE CHOICE OF ALGORITHMS FOR THE

HP-35 received considerable thought. Power
series, polynominal expansions, continued frac-
tions, and Chebyshev polynominals were all con-
sidered for the transcendental functions. All were
too slow because of the number of multiplications
and divisions required. The generalized algorithm
that best suited the requirements of speed and pro-
gramming efficiency for the HP-35 was an iterative
pseudo-division and pseudo-multiplication method
first described in 1624 by Henry Briggs in ‘Arith-
metica Logarithmica’ and later by Volder' and Meg-
gitt?. This is the same type of algorithm that was
used in previous HP calculators.

An estimate of program execution times wa3
made, and it became apparent that, by using a bit-
serial data word structure, circuit economies could
be achieved without exceeding a one-second com-
putation time for any function. Furthermore, the
instruction address and instruction word could be
bit-serial, too.

The complexity of the algorithms made multilevel
programming a necessity. This meant the calculator
had to have subroutine capability, as well as special
flags to indicate the status and separations of var-
ious programs. In the HP-35, interrogation and
branching on flag bits—or on arithmetic carry or
borrow—are done by a separate instruction instead
of having this capability contained as part of each
instruction. This affords a great reduction in in-
struction word length with only a slight decrease
in speed.

The arithmetic instruction set was designed spe-
cifically for a decimal transcendental-function cal-
culator. The basic arithmetic operations are
performed by a 10's complement adder-subtractor
which has data paths to three of the registers that

10

are used as working storage. Partial word desig-
nators (word select) are part of the instruction word
to allow operating on only part of a number—for
example, the mantissa or the exponent field.

Sine Algorithm

The sine routine illustrates the complexities of
programming a sophisticated calculator. First, de-
grees are converted to radians by multiplying by
27/360. Then integer circles are removed by repeat-
edly subtracting 2= from the absolute value of the
argument until the result is less than 2. If the result
is negative, 2~ is added to make it positive. Further
prescaling to the first quadrant isn't required. The
resulting angle is resolved by repeatedly subtracting
tan™ 1 and counting until overdraft, then restoring,
repeatedly subtracting tan™ 0.1 and counting until
overdraft, and so on. This is very similar to division
with a changing divisor. Next the resulting pseudo-
quotient is used as a multiplier. Beginning with an
X vector of 1 and a Y vector of 0 a fraction of X is
added to Y and a fraction of Y is subtracted from X
for the number of times indicated by each multiplier
digit. The fraction is a negative power of 10 cor-
responding to that digit position. The equations of
the algorithm are:

pseudo-division {Sm =0, — tan' k

pseudo- Xost = Xa — Ya k
multiplication |Yu.: = Ya + Xo k
Xo = 1, Yo =0
k=107 j=012...

The pseudo-multiplication algorithm is similar to
multiplication except that product and multiplicand
are interchanged within each iteration. It is equiva-
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Fig. 1. Accuracy of exponential function in HP-35 Calculator. Error bound is approximately
Se*, where 8 js the error due to prescaling and the algorithm itself. § is estimated to be
equivalent to one count in the tenth significant digit of the argument x.

lent to a rotation of axes. The resultant Y and X
vectors are proportional to the sine and cosine
respectively. The constant of proportionality arises
because the axis rotation is by large increments
and therefore produces a stretching of the unit
circle. Since this constant is the same for both sine
and cosine their ratio is identically equal to the
tangent. The signs of each are preserved. The sine
is derived from the tangent by the relationship
tan 0

sin 1 = [—1+tan99) L
Accuracy and Resolution

Determination of the accuracy of the HP-35 is as
complex as its algorithms. The calculator has in-
ternal roundoff in the 11th place. In add, subtract,
multiply, divide, and square root calculations the
accuracy is =% count in the 10th digit. In calcu-
lating the transcendental functions many of these
elementary calculations are performed with the
roundoff error accumulating. In the sine compu-
tation there is a divide, a multiply, and a subtract
in the prescale operation, and there are two di-
vides, a multiply, an addition, and a square root
in the post-computation. Roundoff errors in these
calculations must be added to the error of the basic
algorithm to get the total error.

Accuracy and resolution are sometimes in con-
flict; for example, the subtraction of .9999999999
from 1.0 vields only one digit of significance. This
becomes very important, for example, in computa-
tions of the cosines of angles very close to 90°. The
cosine of 89.9° would be determined more accu-
rately by finding the sine of 0.1°. Similarly, the sine
of 10" wastes all ten digits of significance in speci-
fying the input angle, because all integer circles will
be discarded.

For many functions there is no simple exact ex-
pression for the error. The exponential function is
a good example. Let 8 be the accumulated prescal-
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ing error and computational error in the algorithm,
referred to the input argument x. Then for 8§ < <1,

x+4 & Sex

—

e e* = ee* — e* = e¥(e" 1)

Fig. 1 shows the error bound for the exponential
function for various arguments, assuming that 8 is
equivalent to one count in the tenth significant
digit of x. &
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