Contents

Page
10 At a Glance
21 1: Getting Started
31 2: Business Percentages
35 3: Number Storage and Arithmetic
43 4: Picturing Financial Problems
51 5: Time Value of Money Calculations
75 6: Cash Flow Calculations
85 7: Statistical Calculations
95 8: Additional Examples
116 A: Assistance, Batteries, and Service
127 B: More About Calculations
133 Messages
136 Index
1. Interest conversion (page 71).
2. Time value of money (page 51).
3. Cash flows (page 75).
4. Store and recall (page 38).
5. Percent (page 31).
6. Clear all memory (page 23).
7. Separate two numbers (page 25).
9. Constant (page 35).
10. Shift: activate yellow labeled functions (page 24).
11. On, clear display, cancel operation (page 21).
12. n through Σxy: statistical summation registers (page 89).
15. 3-key memory (page 37).
16. Margin and markup (page 33).
17. Accumulate statistical data (page 88 and 87).
19. Annunciator line (page 24).

Edition 6
Part Number 00010-90037
Notice

For warranty and regulatory information for this calculator, see pages 123 and 126.

This manual and any examples contained herein are provided "as is" and are subject to change without notice. Hewlett-Packard Company makes no warranty of any kind with regard to this manual, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard Co. shall not be liable for any errors or for incidental or consequential damages in connection with the furnishing, performance, or use of this manual or the keystroke programs contained herein.

© Hewlett-Packard Co. 1988. All rights reserved. Reproduction, adaptation, or translation of this manual is prohibited without prior written permission of Hewlett-Packard Company, except as allowed under the copyright laws.

The programs that control your calculator are copyrighted and all rights are reserved. Reproduction, adaptation, or translation of those programs without prior written permission of Hewlett-Packard Co. is also prohibited.

Corvallis Division
1000 N.E. Circle Blvd.
Corvallis, OR 97330, U.S.A.

Welcome to the HP-10B

Your HP-10B reflects the superior quality and attention to detail in engineering and manufacturing that have distinguished Hewlett-Packard products for 50 years. Hewlett-Packard stands behind this calculator—we offer expertise to support its use (see inside the back cover) and worldwide service.

Hewlett-Packard Quality

Our calculators are made to excel and to be easy to use.

- This calculator is designed to withstand the drops, vibrations, pollutants (smog, ozone), temperature extremes, and humidity variations that it may encounter in everyday work life.
- The calculator and its manual have been designed and tested for ease of use. We added many examples to highlight the varied uses of the calculator. Advanced materials and permanent, molded key lettering provide a long keyboard life and a positive feel to the keyboard.
- CMOS (low-power) electronics and a liquid-crystal display allow data to be retained indefinitely and the batteries to last a long time.
- The microprocessor has been optimized for fast and reliable computations using 15 digits internally for precise results.
- Extensive research has created a design that has minimized the adverse effects of static electricity, a potential cause of malfunctions and data loss in calculators.

Printing History

Edition 1 October 1988
Edition 2 June 1989
Edition 3 June 1990
Edition 4 August 1992
Edition 6 November 1994
Features

The features of the HP-10B and the manual reflect the needs and wishes of many customers:

- A large 12-character display.
- An At-a-Glance section in the manual for quick reference.
- Applications to solve business and financial tasks:
 - **Time Value of Money.** Loans, savings, leases, and amortization schedules.
 - **Interest Conversion.** Nominal and effective rates.
 - **Cash Flows.** Net present value and internal rate of return.
 - **Business Percentages.** Percent change, markup, and margin calculations.
 - **Statistics.** Mean, standard deviation, correlation coefficient, and linear regression forecasting, plus other statistical calculations.
- Enough memory to store an initial cash flow and 14 cash flow groups, with up to 99 cash flows per group.
- Fifteen numbered storage registers.
- Easy access to functions saves keystrokes and adds convenience.
 - Auto-increment capability for amortization schedules.
 - Labels for amortization and cash flows.
 - Automatic constant.
 - 3-key memory.
- Many examples are included in the manual so you can combine them for your specific needs.

Contents

10 At a Glance...
10 Basics
11 Percentages
12 Memory Keys
13 Time Value of Money (TVM)
14 TVM What if...
15 Amortization
16 Interest Rate Conversion
17 IRR/YR and NPV
19 Statistics

1 21 Getting Started
21 Power On and Off
21 Adjusting the Display Contrast
21 Simple Arithmetic Calculations
23 Understanding the Display and Keyboard
23 Cursor
23 Clearing the Calculator
23 Clearing Memory
24 Annunciators
24 Shift Key
25 INPUT Key
25 SWAP Key
25 Math Functions
26 Display Format of Numbers
27 Specifying Displayed Decimal Places
27 Scientific Notation
28 Displaying the Full Precision of Numbers
Contents

A

116 Assistance, Batteries, and Service
116 Answers to Common Questions
117 Environmental Limits
118 Power and Batteries
118 Low Power Annunciator
119 Installing Batteries
120 Determining if the Calculator Requires Service
121 Confirming Calculator Operation—the Self-Test
123 Limited One-Year Warranty
123 What Is Covered
123 What Is Not Covered
124 Consumer Transactions in the United Kingdom
124 If the Calculator Requires Service
124 Obtaining Service
125 Service Charge

B

127 More About Calculations
127 IRR/YR Calculations
127 Possible Outcomes of Calculating IRR/YR
128 Halting and Restarting IRR/YR
128 Entering a Guess for IRR/YR
129 Effect of Using Σ– To Correct Data
129 Range of Numbers
129 Equations
129 Margin and Markup Calculations
130 Time Value of Money (TVM)
130 Amortization
131 Interest Rate Conversions
131 Cash-Flow Calculations
132 Statistics

133 Messages

136 Index
At a Glance...

This section is designed for you if you’re already familiar with calculator operation or financial concepts. You can use it for quick reference. The rest of the manual is filled with explanations and examples of the concepts presented in this section.

Basics — At a Glance...

Add 15% to $17.50.

Keys:

<table>
<thead>
<tr>
<th>Description</th>
<th>Display:</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.50 +</td>
<td>17.50</td>
</tr>
<tr>
<td>15 [] -</td>
<td>20.13</td>
</tr>
</tbody>
</table>

Find the margin if the cost is $15.00 and selling price is $22.00.

Keys:

<table>
<thead>
<tr>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enters cost.</td>
</tr>
</tbody>
</table>

If the cost is $20.00 and the markup is 33%, what is the selling price?

Keys:

<table>
<thead>
<tr>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enters cost.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enters markup.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculates price.</td>
</tr>
</tbody>
</table>
Memory Keys — At a Glance...

Stores a constant operation.

Stores a value in the M register (memory location).

Recalls a value from the M register.

Adds a value to the number stored in the M register.

Stores a value in a numbered register.

Recalls a value from a numbered register.

Multiply 17, 22, and 25 by 7, storing "× 7" as a constant operation.

<table>
<thead>
<tr>
<th>Keys</th>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 * 7 [K</td>
<td>7.00</td>
<td>Stores "× 7" as a constant operation.</td>
</tr>
<tr>
<td>↓</td>
<td>119.00</td>
<td>Multiplies 17 × 7.</td>
</tr>
<tr>
<td>22 [</td>
<td>154.00</td>
<td>Multiplies 22 × 7.</td>
</tr>
<tr>
<td>25 [</td>
<td>175.00</td>
<td>Multiplies 25 × 7.</td>
</tr>
</tbody>
</table>

Store 519 in register 2, then recall it.

<table>
<thead>
<tr>
<th>Keys</th>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>519 [STO 2</td>
<td>519.00</td>
<td>Stores in register 2.</td>
</tr>
<tr>
<td>[</td>
<td>0.00</td>
<td>Clears display.</td>
</tr>
<tr>
<td>RCL 2</td>
<td>519.00</td>
<td>Recalls register 2.</td>
</tr>
</tbody>
</table>

Time Value of Money (TVM) — At a Glance...

Enter any four of the five values and solve for the fifth.

A negative sign in the display represents money paid out; money received is positive.

<table>
<thead>
<tr>
<th>Keys</th>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[N</td>
<td></td>
<td>Number of payments.</td>
</tr>
<tr>
<td>[I/YR</td>
<td></td>
<td>Interest per year.</td>
</tr>
<tr>
<td>[PV</td>
<td></td>
<td>Present value.</td>
</tr>
<tr>
<td>[PMT</td>
<td></td>
<td>Payment.</td>
</tr>
<tr>
<td>[FV</td>
<td></td>
<td>Future value.</td>
</tr>
<tr>
<td>[BEG/END</td>
<td></td>
<td>Begin or End mode.</td>
</tr>
<tr>
<td>[P/YR</td>
<td></td>
<td>Number of payments per year mode.</td>
</tr>
</tbody>
</table>

If you borrow $14,000 \(PV\) for 360 months \(N\) at 10% interest \(I/YR\), what is the monthly payment?

Set to End mode. Press \[BEG/END\] if BEGIN annunciator is displayed.

<table>
<thead>
<tr>
<th>Keys</th>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 [P/YR</td>
<td>12.00</td>
<td>Sets payments per year.</td>
</tr>
<tr>
<td>360 [N</td>
<td>360.00</td>
<td>Enters number of payments.</td>
</tr>
<tr>
<td>10 [I/YR</td>
<td>10.00</td>
<td>Enters interest per year.</td>
</tr>
<tr>
<td>14000 [PV</td>
<td>14,000.00</td>
<td>Enters present value.</td>
</tr>
<tr>
<td>0 [FV</td>
<td>0.00</td>
<td>Enters future value.</td>
</tr>
<tr>
<td>[PMT</td>
<td>−122.86</td>
<td>Calculates payment if paid at end of period.</td>
</tr>
</tbody>
</table>
TVM What if...—At a Glance...

It is not necessary to reenter TVM values for each example. Using the values you just entered (page 13), how much can you borrow if you want a payment of $100.00?

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 +/- PMT</td>
<td>-100.00</td>
<td>Enters new payment amount. (Money paid out is negative.)</td>
</tr>
<tr>
<td>PV</td>
<td>11,395.08</td>
<td>Calculates amount you can borrow.</td>
</tr>
</tbody>
</table>

How much can you borrow at a 9.5% interest rate?

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5 /YR</td>
<td>9.50</td>
<td>Enters new interest rate.</td>
</tr>
<tr>
<td>PV</td>
<td>11,892.67</td>
<td>Calculates new present value for $100.00 payment and 9.5% interest.</td>
</tr>
<tr>
<td>10 /YR</td>
<td>10.00</td>
<td>Reenters original interest rate.</td>
</tr>
<tr>
<td>14000 PV</td>
<td>14,000.00</td>
<td>Reenters original present value.</td>
</tr>
<tr>
<td>PMT</td>
<td>-122.86</td>
<td>Calculates original payment.</td>
</tr>
</tbody>
</table>

Amortization—At a Glance...

After calculating a payment using Time Value of Money (TVM), enter the periods to amortize, then press [AMORT].

Using the previous TVM example (page 13), amortize a single payment and then a range of payments.

Amortize the 20th payment of the loan.

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 INPUT</td>
<td>20.00</td>
<td>Enters payment to amortize.</td>
</tr>
<tr>
<td>[AMORT]</td>
<td>PEr 20 – 20</td>
<td>Displays payment to amortize.</td>
</tr>
<tr>
<td></td>
<td>Int</td>
<td>Displays interest. (Money paid out is negative.)</td>
</tr>
<tr>
<td></td>
<td>-115.61</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prin</td>
<td>Displays principal.</td>
</tr>
<tr>
<td></td>
<td>-7.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bAL</td>
<td>Displays balance.</td>
</tr>
<tr>
<td></td>
<td>13,865.83</td>
<td></td>
</tr>
</tbody>
</table>

Amortize the 1st through 12th loan payments.

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 INPUT</td>
<td>12</td>
<td>Enters range of payments to amortize.</td>
</tr>
<tr>
<td>[AMORT]</td>
<td>PEr 1 – 12</td>
<td>Displays range of periods (payments).</td>
</tr>
<tr>
<td></td>
<td>Int</td>
<td>Displays interest. (Money paid out is negative.)</td>
</tr>
<tr>
<td></td>
<td>-1,396.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prin</td>
<td>Displays principal.</td>
</tr>
<tr>
<td></td>
<td>-77.82</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bAL</td>
<td>Displays balance.</td>
</tr>
<tr>
<td></td>
<td>13,922.18</td>
<td></td>
</tr>
</tbody>
</table>
Interest Rate Conversion — At a Glance...

To convert between nominal and effective interest rates, enter the known rate and the number of periods per year, then solve for the unknown rate.

- **NOM%**: Nominal interest percent.
- **EFF%**: Effective interest percent.
- **P/YR**: Periods per year.

Find the annual effective interest rate of 10% nominal interest compounded monthly.

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 ▶️NOM%</td>
<td>10.00</td>
<td>Enters nominal rate.</td>
</tr>
<tr>
<td>12 ▶️P/YR</td>
<td>12.00</td>
<td>Enters payments per year.</td>
</tr>
<tr>
<td>▶️EFF%</td>
<td>10.47</td>
<td>Calculates annual effective interest.</td>
</tr>
</tbody>
</table>

IRR/YR and NPV — At a Glance...

- **P/YR**: Number of periods per year (default is 12).
- **CF**: Cash flows, up to 15 (“j” identifies the cash flow number).
- **N**: Number of consecutive times cash flow “j” occurs.
- **IRR/YR**: Internal rate of return per year.
- **NPV**: Net present value.

If you have an initial cash outflow of $-40,000, followed by monthly cash inflows of $4,700, $7,000, $7,000, and $23,000, what is the IRR/YR? What is the IRR per month?

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶️CLEAR ALL</td>
<td>0.00</td>
<td>Clears all memory.</td>
</tr>
<tr>
<td>12 ▶️P/YR</td>
<td>12.00</td>
<td>Sets payments per year.</td>
</tr>
</tbody>
</table>
| 40000 +/- CF | CF 0
-40,000.00 | Enters initial outflow. |
| 4700 CF | CF 1
4,700.00 | Enters first cash flow. |
| 7000 CF | CF 2
7,000.00 | Enters second cash flow. |
| 2 ▶️N | n 2
2.00 | Enters number of consecutive times cash flow occurs. |
Statistics — At a Glance...

What is the NPV if the discount rate is 10%?

10 \(\text{i/YR} \)

10.00

Enters \(\text{i/YR} \).
Calculates NPV.

622.85

CLx

Clear statistical registers.

\(\text{number} \ \text{x+} \)
Enter one-variable statistical data.

\(\text{number} \ \text{x-} \)
Delete one-variable statistical data.

\(\text{number1} \ \text{INPUT} \ \text{number2} \ \text{x+} \)
Enter two-variable statistical data.

\(\text{number1} \ \text{INPUT} \ \text{number2} \ \text{x-} \)
Delete two-variable statistical data.

\(\text{\(\bar{x} \)} \)
Mean of \(x \) and \(y \).

\(\text{\(\bar{y} \)} \)
Mean of \(x \) weighted by \(y \).

\(\text{\(s_{x,y} \)} \)
Sample standard deviation of \(x \) and \(y \).

\(\text{\(s_{x}, s_{y} \)} \)
Population standard deviation of \(x \) and \(y \).

\(\text{\(\hat{y} \)} \) and \(\text{\(\hat{y} \)} \)
Estimate of \(\hat{y} \) and correlation coefficient.

\(\text{\(\hat{y} \)} \)
Estimate of \(\hat{y} \).

\(\text{\(y \)} \)-intercept and slope.
Using the following data, find the mean of \(x \) and \(y \), the sample standard deviation of \(x \) and \(y \), and the \(y \)-intercept and the slope of the linear regression forecast line. Then, use summation statistics to find \(n \) and \(\Sigma y \).

<table>
<thead>
<tr>
<th>x-data</th>
<th>2</th>
<th>4</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>y-data</td>
<td>50</td>
<td>90</td>
<td>160</td>
</tr>
</tbody>
</table>

Keys:

<table>
<thead>
<tr>
<th>Key</th>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[CL Σ]</td>
<td>0.00</td>
<td>Clears statistics registers.</td>
</tr>
<tr>
<td>2 INPUT</td>
<td>1.00</td>
<td>Enters first (x,y) pair.</td>
</tr>
<tr>
<td>4 INPUT</td>
<td>2.00</td>
<td>Enters second (x,y) pair.</td>
</tr>
<tr>
<td>6 INPUT</td>
<td>3.00</td>
<td>Enters third (x,y) pair.</td>
</tr>
<tr>
<td>[x,y]</td>
<td>4.00</td>
<td>Displays mean of (x).</td>
</tr>
<tr>
<td>[SWAP]</td>
<td>100.00</td>
<td>Displays mean of (y).</td>
</tr>
<tr>
<td>[Σx,Σy]</td>
<td>2.00</td>
<td>Displays sample standard deviation of (x).</td>
</tr>
<tr>
<td>[SWAP]</td>
<td>55.68</td>
<td>Displays sample standard deviation of (y).</td>
</tr>
<tr>
<td>0 [x⁻m]</td>
<td>-10.00</td>
<td>Displays (y)-intercept of regression line (predicted (\hat{y}) value for (x = 0)).</td>
</tr>
<tr>
<td>[SWAP]</td>
<td>27.50</td>
<td>Displays slope of regression line.</td>
</tr>
<tr>
<td>RCL 4</td>
<td>3.00</td>
<td>Displays (n), number of data points entered.</td>
</tr>
<tr>
<td>RCL 9</td>
<td>1,420.00</td>
<td>Displays (\Sigma x y), sum of the products of (x)- and (y)-values.</td>
</tr>
</tbody>
</table>

Getting Started

Power On and Off

To turn on your HP-10B, press [ON] (the key above the “ON” label). To turn the calculator off, press the yellow shift key ([]), then [OFF] (also written [OFF]).

Since the calculator has continuous memory, turning it off does not affect the information you've stored. To conserve energy, the calculator turns itself off approximately 10 minutes after you stop using it. The calculator's three alkaline batteries last approximately one year. If you see the low-battery symbol () in the display, replace the batteries. Refer to appendix A for more information.

Adjusting the Display Contrast

To change the brightness of the display, hold down [ON] and press [4] or [5].

Simple Arithmetic Calculations

Arithmetic Operators. The following examples demonstrate using the arithmetic operators [+] , [-], [x], and [÷].

If you press more than one operator consecutively, for example [+] [-] [+] [x] [÷], all are ignored except the last one.
If you make a typing mistake while entering a number, press \(\text{\textr} \) to erase the incorrect digits.

Keys: Display: Description:

24.71 \(\text{\textp} \) 62.47 \(\text{\textr} \) 87.18 Adds 24.71 and 62.47.

When a calculation has been completed (by pressing \(\text{\textr} \)), pressing a number key starts a new calculation.

19 \(\text{\textx} \) 12.68 \(\text{\textr} \) 240.92 Calculates \(19 \times 12.68 \).

If you press an operator key after completing a calculation, the calculation is continued.

\(\text{\textp} \) 115.5 \(\text{\textr} \) 356.42 Completes calculation of \(240.92 + 115.5 \).

You can do chain calculations without using \(\text{\textr} \) after each step.

6.9 \(\text{\textx} \) 5.35 \(\text{\textp} \) 36.92 Pressing \(\text{\textr} \) displays intermediate result (6.9 \(\times \) 5.35).

.91 \(\text{\textr} \) 40.57 Completes calculation.

Chain calculations are interpreted in the order in which they are entered. Calculate \(4 + 9 \times 3 \).

4 \(\text{\textp} \) 9 \(\text{\textx} \) 13.00 Adds \(4 + 9 \).

3 \(\text{\textr} \) 39.00 Multiplies \(13 \times 3 \).

Negative Numbers. Enter the number and press \(\text{\textp}/\text{\textm} \) to change the sign. Calculate \(-75 \div 3 \).

Keys: Display: Description:

75 \(\text{\textp}/\text{\textm} \) \(-75_ \) Changes the sign of 75.

\(\text{\textp} \) 3 \(\text{\textr} \) \(-25.00 \) Calculates result.

Understanding the Display and Keyboard

Cursor

The cursor (\(_{\text{\textl}} \)) is visible when you are entering a number.

Clearing the Calculator

When the cursor is on, \(\text{\textp} \) erases the last digit you entered. Otherwise, \(\text{\textr} \) clears the display and cancels the calculation.

While you are entering a number, pressing \(\text{\textc} \) clears it to zero. Otherwise, \(\text{\textc} \) clears the display of its current contents and cancels the current calculation.

Clearing Messages. When the HP-10B is displaying an error message, \(\text{\textc} \) or \(\text{\textr} \) clears the message and restores the original contents of the display. Refer to “Messages,” on page 133 for a complete list of messages and meanings.

Clearing Memory

<table>
<thead>
<tr>
<th>Keys</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{\textp}) CLEAR ALL (\text{\textp})</td>
<td>Clears all memory. Does not reset modes.*</td>
</tr>
<tr>
<td>(\text{\textp}) CLR (\text{\textc})</td>
<td>Clears statistical memory.</td>
</tr>
</tbody>
</table>

* Modes on your HP-10B are number of payments per year (page 52), Begin and End (page 53), and the display formats (page 26).
To clear all memory and reset calculator modes, press and hold down [C], then press and hold down both [N] and [2+]. When you release all three, all memory is cleared. The ALL CLR message is displayed.

Annunciators

Annunciators are symbols in the display that indicate the status of the calculator.

<table>
<thead>
<tr>
<th>Annunciator</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>→</td>
<td>Shift is active; when a key is pressed, the function labeled in yellow above the key, is executed (below).</td>
</tr>
<tr>
<td>:</td>
<td>[INPUT] has been pressed, or two values have been entered or returned (page 25).</td>
</tr>
<tr>
<td>PEND</td>
<td>An arithmetic operator is pending (+, for example).</td>
</tr>
<tr>
<td>BEGIN</td>
<td>Begin mode is active (page 53).</td>
</tr>
<tr>
<td>←</td>
<td>Battery power is low (page 118).</td>
</tr>
</tbody>
</table>

INPUT Key

The [INPUT] key is used to separate two numbers when using two-number functions or two-variable statistics.

The : annunciator is displayed if [INPUT] has been pressed. If a number is in the display, press [C] to erase the : annunciator and clear the display. If the cursor or an error message is visible in the display, press [C] twice to erase the : annunciator.

SWAP Key

Pressing [SWAP] exchanges the following:

- The last two numbers that you entered; for instance, to change the order of division or subtraction.
- The results of functions that return two values. The : annunciator indicates that two results have been returned; press [SWAP] to see the hidden result.
- The x- and y-values when using statistics.

Shift Key

All of the HP-10B keys have a second or “shifted” function printed in yellow above the key. The yellow shift key ([]) is used to access these functions.

When you press [], the shift annunciator (→) is displayed to indicate that the shifted functions are active. To turn the → annunciator off, press [] again.

For example, press [] followed by [x²] (also shown [x²]) to multiply a number in the display by itself.

To perform consecutive shifted operations, hold down the shift key while pressing the desired keys.

Math Functions

One-Number Functions. Math functions involving one number use the number in the display.
Two-Number Functions. When a function requires two numbers, the numbers are entered like this: number1 INPUT number2 followed by the operation. Pressing INPUT evaluates the current expression and displays the : annunciator. For example, the following keystrokes calculate the percent change between 17 and 29.

Keys:

Display:

Description:

89.25 \(\sqrt{x} \)

9.45
Calculates square root.

3.57 + 2.36 \(\frac{1}{x} \)

0.42
1/2.36 is calculated first.

\(\square \)

3.99
Adds 3.57 and 1/2.36.

Specifying Displayed Decimal Places

To specify the number of displayed decimal places:

1. Press \(\text{DISP} \).

2. Enter the number of digits (0 through 9) that you wish to appear after the decimal point.

Keys:

Display:

Description:

\(\text{C} \)

0.00
Clears display.

\(\text{DISP} \) 3

0.000
Displays three decimal places.

45.6 \(\times \) .1256 \(\text{=} \)

5.727
Displays nine decimal places.

\(\text{DISP} \) 9

5.727360000
Restores two decimal places and rounds number in display.

\(\text{DISP} \) 2

5.73

Display Format of Numbers

When you turn on the HP-10B for the first time, numbers are displayed with two decimal places and a period as the decimal point. The display format controls how many digits appear in the display.

If the result of a calculation is a number containing more significant digits than can be displayed in the current display format, the number is rounded to fit the current display setting.

Regardless of the current display format, each number is stored internally as a signed, 12-digit number with a signed, three-digit exponent.

Scientific Notation

Scientific notation is used to represent numbers that are too large or too small to fit in the display. For example, if you enter the number 10,000,000 \(\times \) 10,000,000 \(\square \), the result is 1.00E14, which means “one times ten to the fourteenth power” or “1.00 with the decimal point moved fourteen places to the right.” You can enter this number by pressing \(1 \text{E} 14 \). The E stands for “exponent of ten.”

Exponents can also be negative for very small numbers. The number 0.0000000000004 is displayed as 4.00E-12, which means “four times ten to the negative twelfth power” or “4.0 with the decimal point moved 12 places to the left.” You can enter this number by pressing \(4 \text{E} (-12) \).
Displaying the Full Precision of Numbers

To set your calculator to display numbers as precisely as possible, press [DISP] 2 (trailing zeros are not displayed.) To temporarily view all 12 digits of the number in the display (regardless of the current display format setting), press [DISP] and hold [AC]. The number is displayed as long as you continue holding [AC]. The decimal point is not shown.

Start with two decimal places ([DISP] 2).

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 ÷ 7 =</td>
<td>1.43</td>
<td>Divides.</td>
</tr>
<tr>
<td>[DISP] 2</td>
<td>142857142857</td>
<td>Displays all 12 digits.</td>
</tr>
</tbody>
</table>

Interchanging the Period and Comma

To switch between the period and comma (United States and International display) used as the decimal point and digit separator, press [F].

For example, one million can be displayed as 1,000,000.00 or 1.000.000.00.

Rounding Numbers

The calculator stores and calculates using 12 digit numbers. When 12 digit accuracy is not desirable, use [RND] to round the number to the displayed format before using it in a calculation. Rounding numbers is useful when you want the actual (dollars and cents) monthly payment.

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.87654321</td>
<td>9.87654321</td>
<td>Enters a number with more than two non-zero decimal places.</td>
</tr>
<tr>
<td>[DISP] 2</td>
<td>9.88</td>
<td>Displays two decimal places.</td>
</tr>
<tr>
<td>[RND]</td>
<td>987654321000</td>
<td>Displays all digits without the decimal while you press [AC].</td>
</tr>
<tr>
<td>[DISP] 2</td>
<td>988000000000</td>
<td>Shows rounded, stored number.</td>
</tr>
</tbody>
</table>

Messages

The HP-10B displays messages about the status of the calculator or informs you that you have attempted an incorrect operation. To clear a message from the display, press [C] or [AC]. Refer to “Messages” on page 133 for a list of meanings.

Picturing Memory

The available memory in the HP-10B consists of:

- Ten business application registers.
- A convenient M (memory) register.
- Fifteen registers for storing numbers, cash flows, and summary statistics.
Business Percentages

You can use the HP-10B to calculate simple percent, percent change, cost, price, margin, and markup.

Percent Key

The (%) key has two functions: finding a percent and adding or subtracting a percent.

Finding a Percent

The (%) key divides a number by 100 unless it is preceded by an addition or subtraction sign.

Example. Find 25% of 200.

<table>
<thead>
<tr>
<th>Keys</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 [×]</td>
<td>200.00</td>
<td>Enters 200.</td>
</tr>
<tr>
<td>25 [%]</td>
<td>0.25</td>
<td>Converts 25% to a decimal.</td>
</tr>
<tr>
<td>[+]</td>
<td>50.00</td>
<td>Multiplies 200 by 25%.</td>
</tr>
</tbody>
</table>
Adding or Subtracting a Percent

You can add or subtract a percent in one calculation.

Example. Decrease 200 by 25%.

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 ↓</td>
<td>200.00</td>
<td>Enters 200.</td>
</tr>
<tr>
<td>25 %</td>
<td>50.00</td>
<td>Multiplies 200 by 0.25.</td>
</tr>
<tr>
<td>↓</td>
<td>150.00</td>
<td>Subtracts 50 from 200.</td>
</tr>
</tbody>
</table>

Example. You borrow $1,250 from a relative, and you agree to repay the loan in a year with 7% simple interest. How much money will you owe?

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1250 ↓ 7 %</td>
<td>87.50</td>
<td>Calculates loan interest. Adds $87.50 and $1,250.00 to show repayment amount.</td>
</tr>
<tr>
<td>↓</td>
<td>1,337.50</td>
<td></td>
</tr>
</tbody>
</table>

Percent Change

Calculate the percent change between two numbers (n_1 and n_2, expressed as a percent of n_1) by entering n_1 [INPUT] n_2, then press [%CHG].

Example. Calculate the percent change between 291.7 and 316.8.

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>291.7 [INPUT]</td>
<td>291.70</td>
<td>Enters n_1.</td>
</tr>
<tr>
<td>316.8 [%CHG]</td>
<td>8.60</td>
<td>Calculates percent change.</td>
</tr>
</tbody>
</table>

Example. Calculate the percent change between (12 × 5) and (65 + 18).

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 × 5 [INPUT]</td>
<td>60.00</td>
<td>Calculates and enters n_1.</td>
</tr>
<tr>
<td>65 + 18 [%CHG]</td>
<td>38.33</td>
<td>Calculates percent change.</td>
</tr>
</tbody>
</table>

Margin and Markup Calculations

The HP-10B can calculate cost, selling price, margin, or markup.

<table>
<thead>
<tr>
<th>Application</th>
<th>Keys</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Margin</td>
<td>[CST], [PRC], [MAR]</td>
<td>Margin is markup expressed as a percent of price.</td>
</tr>
<tr>
<td>Markup</td>
<td>[CST], [PRC], [MU]</td>
<td>Markup calculations are expressed as a percent of cost.</td>
</tr>
</tbody>
</table>

To see any value used by the Margin and Markup application, press [RCL] and then the key you wish to see. For example, to see the value stored as [CST], press [RCL] [CST]. Margin and Markup share the same storage register. For example, if you store 20 in [MAR], then press [RCL] [MU], you will see 20.00 displayed.

Margin Calculations

Example. Kilowatt Electronics purchases televisions for $255. The televisions are sold for $300. What is the margin?

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>255 [CST]</td>
<td>255.00</td>
<td>Stores cost in CST.</td>
</tr>
<tr>
<td>300 [PRC]</td>
<td>300.00</td>
<td>Stores selling price in PRC.</td>
</tr>
<tr>
<td>[MAR]</td>
<td>15.00</td>
<td>Calculates margin.</td>
</tr>
</tbody>
</table>
Markup on Cost Calculations

Example. The standard *markup* on costume jewelry at Kleiner's Kosmetique is 60%. They just received a shipment of chokers costing $19.00 each. What is the retail price per choker?

<table>
<thead>
<tr>
<th>Keys</th>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>19 [CST]</td>
<td>19.00</td>
<td>Stores cost.</td>
</tr>
<tr>
<td>60 [MU]</td>
<td>60.00</td>
<td>Stores markup.</td>
</tr>
<tr>
<td>PRC</td>
<td>30.40</td>
<td>Calculates retail price.</td>
</tr>
</tbody>
</table>

Using Margin and Markup Together

Example. A food cooperative buys cases of canned soup with an invoice cost of $9.60 per case. If the co-op routinely uses a 15% *markup*, for what price should it sell a case of soup? What is the margin?

<table>
<thead>
<tr>
<th>Keys</th>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.6 [CST]</td>
<td>9.60</td>
<td>Stores invoice cost.</td>
</tr>
<tr>
<td>15 [MU]</td>
<td>15.00</td>
<td>Stores markup.</td>
</tr>
<tr>
<td>PRC</td>
<td>11.04</td>
<td>Calculates the price on a case of soup.</td>
</tr>
<tr>
<td>MAR</td>
<td>13.04</td>
<td>Calculates margin.</td>
</tr>
</tbody>
</table>

Number Storage and Arithmetic

Using Stored Numbers in Calculations

You can store numbers, for reuse, in several different ways:

- Use [K] (Constant) to store a number and its operator for repetitive operations.
- Use 3 Key Memory ([+M], [RM], and [M+]) to store, recall, and sum numbers with a single keystroke.
- Use [STO] and [RCL] to store and recall the 15 numbered registers.

Using Constants

Use [K] to store a number and arithmetic operator for repetitive calculations. Once the constant operation is stored, enter a number and press [\(\)]. The stored operation is performed on the number in the display.
Keys and Operations

<table>
<thead>
<tr>
<th>Key</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ number K</td>
<td>Stores "+ number" as constant.</td>
</tr>
<tr>
<td>- number K</td>
<td>Stores "- number" as constant.</td>
</tr>
<tr>
<td>× number K</td>
<td>Stores "× number" as constant.</td>
</tr>
<tr>
<td>÷ number K</td>
<td>Stores "/ number" as constant.</td>
</tr>
<tr>
<td>y^x value K</td>
<td>Stores "y^x value" as constant.</td>
</tr>
<tr>
<td>+ number % K</td>
<td>Stores "+ number %" as constant.</td>
</tr>
<tr>
<td>- number % K</td>
<td>Stores "- number %" as constant.</td>
</tr>
<tr>
<td>× number % K</td>
<td>Stores "× number %" as constant.</td>
</tr>
<tr>
<td>÷ number % K</td>
<td>Stores "/ number %" as constant.</td>
</tr>
</tbody>
</table>

Example

1. **Calculate** 2^3 and 4^3.

Keys	Display	Description
2 □ [y^x] 3 K	3.00	Stores "y^x" as constant.
4 □	64.00	Calculates 4^3.

Using the M Register

The [→M], [RM], and [M+] keys perform memory operations on a single storage register, called the M register. In most cases, it is unnecessary to clear the M register, since [→M] replaces the previous contents. However, you can clear the M register by pressing 0 [→M]. To add a series of numbers to the M register, use [→M] to store the first number and [M+] to add subsequent numbers. To subtract the displayed number from the number in the M register, press [M-] followed by [M+].

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[→M]</td>
<td>Stores displayed number in the M register.</td>
</tr>
<tr>
<td>[RM]</td>
<td>Recalls number from the M register.</td>
</tr>
<tr>
<td>[M+]</td>
<td>Adds displayed number to the M register.</td>
</tr>
</tbody>
</table>

Example

1. **Calculate** $5 + 2$, $6 + 2$, and $7 + 2$.

Keys	Display	Description
5 ÷ 2 K	2.00	Stores "+ 2" as constant.
=	7.00	Adds 5 + 2.
6 =	8.00	Adds 6 + 2.
7 =	9.00	Adds 7 + 2.

Example

2. **Calculate** $10 + 10\%$, $11 + 10\%$, and $25 + 10\%$.

Keys	Display	Description
10 ÷ 10 % K	1.00	Stores "+ 10\%" as constant.
=	11.00	Adds 10\% to 10.
=	12.10	Adds 10\% to 11.
25 =	27.50	Adds 10\% to 25.

Example

3. **Use** the M register to add 17, 14.25, and 16.95. Then subtract 4.65 and recall the result.

Keys	Display	Description
17 [→M]	17.00	Stores 17 in M register.
4.65 \(\div \) \(M+ \) \(-4.65\) Adds \(-4.65\) to \(M\) register.
\[\text{RM} \]
43.55 Recalls contents of the \(M\) register.

Using Numbered Registers

The \(\text{[STO]} \) and \(\text{[RCL]} \) keys access storage registers \(R_0\) through \(R_9\) and \(R_0\) through \(R_4\). (Refer to “Picturing Memory” on page 29.) The \(\text{[STO]} \) key is used to copy the displayed number to a designated register. The \(\text{[RCL]} \) key is used to copy a number from a register to the display.

To store or recall a number in two steps:

1. Press \(\text{[STO]} \) or \(\text{[RCL]} \). (To cancel this step, press \(\text{[C]} \) or \(\text{[CE]} \).)
2. Enter the register number (0 through 9 for registers \(R_0\) through \(R_9\) or \(\text{[C]} \) 0 through \(\text{[C]} \) 4 for registers \(R_0\) through \(R_4\)).

In the following example, two storage registers are used. Calculate the following:

\[
\begin{align*}
\frac{475.6}{39.15} \quad \text{and} \quad \frac{560.1 + 475.6}{39.15}
\end{align*}
\]

Keys:
\[
475.6 \quad \text{[STO]} \quad 1
\]
\[
39.15 \quad \text{[STO]} \quad 2
\]
\[
560.1 \quad \text{[STO]} \quad 1
\]
\[
R_3
\]

Display:
\[
475.60
\]
\[
39.15
\]
\[
475.60
\]
\[
26.45
\]

Description:
Stores 475.60 (displayed number) in \(R_1\).
Stores 39.15 in \(R_2\).
Recalls \(R_1\).
Recalls \(R_2\).
Completes first calculation.
Completes second calculation.

Example. Store 45.7 in \(R_3\), multiply by 2.5, and store the result in \(R_3\).

Keys:
\[
45.7 \quad \text{[STO]} \quad 3
\]
\[
2.5 \quad \text{[STO]} \quad \times \quad 3
\]

Display:
\[
45.70
\]
\[
2.50
\]

Description:
Stores 45.7 in \(R_3\).
Multiplies 45.7 in \(R_3\) by 2.5 and stores result (114.25) in \(R_3\).
Displays \(R_3\).

You can also use \(\text{[STO]} \) and \(\text{[RCL]} \) for application registers. For example, \(\text{[STO]} \) \(I/\text{yr} \) stores the number from the display in the \(I/\text{yr} \) register. \(\text{RCL} \) \(I/\text{yr} \) copies the contents from \(I/\text{yr} \) to the display.
Doing Arithmetic

Math functions operate on the number in the display.

Example. Calculate $\frac{1}{4}$, then calculate $\sqrt{20} + 47.2 + 1.1^2$.

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$4 \boxed{1/x}$</td>
<td>0.25</td>
<td>Calculates the reciprocal of 4.</td>
</tr>
<tr>
<td>$20 \boxed{\sqrt{x}}$</td>
<td>4.47</td>
<td>Calculates $\sqrt{20}$.</td>
</tr>
<tr>
<td>$+ 47.2$</td>
<td>51.67</td>
<td>Calculates $\sqrt{20} + 47.20$.</td>
</tr>
<tr>
<td>$1.1 \boxed{x^2}$</td>
<td>1.21</td>
<td>Calculates 1.1^2.</td>
</tr>
<tr>
<td>$\boxed{=}$</td>
<td>52.88</td>
<td>Completes the calculation.</td>
</tr>
</tbody>
</table>

Using Parentheses in Calculations

Use parentheses to postpone calculating an intermediate result until you’ve entered more numbers. For example, suppose you want to calculate

$$\frac{30}{(85 - 12)} \times 9$$

If you enter $30 \div 85 \boxed{=}$, the calculator displays the intermediate result, 0.35. This is because calculations without parentheses are performed from left to right, as you enter them. To delay the division until you’ve subtracted 12 from 85, use parentheses. Closing parentheses at the end of the expression can be omitted. For example, entering “$25 \div (3 \times (9 + 12) = ”$ is equivalent to “$25 \div (3 \times (9 + 12)) = ”$.

Power Operator

The power operator, $\boxed{y^x}$, raises the preceding number (y-value) to the power of the following number (x-value).

Example. Calculate 125^3, then find the cube root of 125.

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$125 \boxed{y^x} 3$</td>
<td>1,953,125.00</td>
<td>Calculates 125^3.</td>
</tr>
<tr>
<td>$125 \boxed{y^x} 3 \boxed{1/x}$</td>
<td>5.00</td>
<td>Calculates cube root of 125, which is the same as $125^{1/3}$.</td>
</tr>
</tbody>
</table>
Picturing Financial Problems

How to Approach a Financial Problem

The financial vocabulary of the HP-10B is simplified to apply to all financial fields. For example, your profession may use the term balance, balloon payment, residual, maturity value, or remaining amount to designate a value that the HP-10B knows as [FV] (future value).

The simplified terminology of the HP-10B is based on cash flow diagrams. Cash flow diagrams are pictures of financial problems that show cash flows over time. Drawing a cash flow diagram is the first step to solving a financial problem.

The following cash flow diagram represents investments in a mutual fund. The original investment was $7,000.00, followed by investments of $5,000.00 and $6,000.00 at the end of the third and sixth months. At the end of the 11th month, $5,000.00 was withdrawn. At the end of the 16th month, $16,567.20 was withdrawn.
Periods and Cash Flows

In addition to the sign convention (cash flowing out is negative, cash flowing in is positive) on cash flow diagrams, there are several more considerations:

- The timeline is divided into equal time intervals. The most common period is a month, but days, quarters, and annual periods are also common. The period is normally defined in a contract and must be known before you can begin calculating.
- To solve a financial problem with the HP-10B, all cash flows must occur at either the beginning or end of a period.
- If more than one cash flow occurs at the same place on the cash flow diagram, they are added together or netted. For example, a negative cash flow of $-250.00 and a positive cash flow of $750.00 occurring at the same time on the cash flow diagram are entered as a $500.00 cash flow ($750 - 250 = 500$).
- A valid financial transaction must have at least one positive and one negative cash flow.

Signs of Cash Flows

In cash flow diagrams, money invested is shown as negative and money withdrawn is shown as positive. Cash flowing out is negative, cash flowing in is positive.

For example, from the lender's perspective, cash flows to customers for loans are represented as negative. Likewise, when a lender receives money from customers, cash flows are represented as positive. In contrast, from the borrower's perspective, cash borrowed is positive while cash paid back is negative.

Simple and Compound Interest

Financial calculations are based on the fact that money earns interest over time. There are two types of interest: simple interest and compound interest. The basis for Time Value of Money and cash flow calculations is compound interest.

Simple Interest

In simple-interest contracts, interest is a percent of the original principal. The interest and principal are due at the end of the contract. For example, say you loan $500 to a friend for a year, and you want to be repaid with 10% simple interest. At the end of the year, your friend owes you $550.00 (50 is 10% of 500). Simple interest calculations are done using the \(\times \) key on your HP-10B. An example of a simple interest calculation is on page 97.
Compound Interest

A compound-interest contract is like a series of simple-interest contracts that are connected. The length of each simple-interest contract is equal to one compounding period. At the end of each period the interest earned on each simple-interest contract is added to the principal. For example, if you deposit $1,000.00 in a savings account that pays 6% annual interest, compounded monthly, your earnings for the first month look like a simple-interest contract written for 1 month at $0.5% (6% ÷ 12). At the end of the first month the balance of the account is $1,005.00 (5 is $0.5% of 1,000).

The second month, the same process takes place on the new balance of $1,005.00. The amount of interest paid at the end of the second month is $0.5% of $1,005.00, or $5.03. The compounding process continues for the third, fourth, and fifth months. The intermediate results in this illustration are rounded to dollars and cents.

Interest Rates

When you approach a financial problem, it is important to recognize that the interest rate or rate of return can be described in at least three different ways:

- As a periodic rate. This is the rate that is applied to your money from period to period.
- As an annual nominal rate. This is the periodic rate multiplied by the number of periods in a year.
- As an annual effective rate. This is an annual rate that considers compounding.

In the previous example of a $1,000.00 savings account, the periodic rate is $0.5% (per month), quoted as an annual nominal rate of 6% ($0.5% × 12). This same periodic rate could be quoted as an annual effective rate, which considers compounding. The balance after 12 months of compounding is $1,061.68, which means the annual effective interest rate is 6.168%.

Examples of converting between nominal and annual effective rates are on pages 71 through 72.

Two Types of Financial Problems

The financial problems in this manual use compound interest unless specifically stated as simple interest calculations. Financial problems are divided into two groups: TVM problems and cash flow problems.

Recognizing a TVM Problem

If uniform cash flows occur between the first and last periods on the cash flow diagram, the financial problem is a TVM (time value of money) problem. There are five main keys used to solve a TVM problem.

The word compound in compound interest comes from the idea that interest previously earned or owed is added to the principal. Thus, it can earn more interest. The financial calculation capabilities on the HP-10B are based on compound interest.
Number of periods or payments.

Annual percentage interest rate (usually the annual nominal rate).

Present value (the cash flow at the beginning of the time line).

Periodic payment.

Future value (the cash flow at the end of the cash flow diagram, in addition to any regular periodic payment).

You can calculate any value after entering the other four. Cash flow diagrams for loans, mortgages, leases, savings accounts, or any contract with regular cash flows of the same amount are normally treated as TVM problems. For example, following is a cash flow diagram, from the borrower’s perspective, for a 30-year, $75,000.00 mortgage, with a payment of $-684.07, at 10.5% annual interest, with a $5,000 balloon payment.

Time value of money calculations are described in the next chapter.

Recognizing a Cash Flow Problem

A financial problem that does not have regular, uniform payments (sometimes called uneven cash flows) is a cash flow problem rather than a TVM problem.

A cash flow diagram for an investment in a mutual fund follows. This is an example of a problem that is solved using either NPV (Net Present Value) or IRR/YR (Internal Rate of Return per Year).

One of the values for PV, PMT, FV can be zero. For example, following is a cash flow diagram (from the saver’s perspective) for a savings account with a single deposit and a single withdrawal five years later. Interest compounds monthly. In this example, PMT is zero.
Time Value of Money Calculations

Using the TVM Application

The time value of money (TVM) application is used for compound interest calculations that involve regular, uniform cash flows—called payments. Once the values are entered you can vary one value at a time, without entering all the values again.

To use TVM, several prerequisites must be met:

- The amount of each payment must be the same. If the payment amounts vary, use the procedures described in chapter 6, “Cash Flow Calculations.”
- Payments must occur at regular intervals.
- The payment period must coincide with the interest compounding period. (If it does not, convert the interest rate using the [NOM%], [EFF%], and [P/YR] keys described on page 71.)
- There must be at least one positive and one negative cash flow.
Key

<table>
<thead>
<tr>
<th>Key</th>
<th>Stores or Calculates</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>The number of payments or compounding periods.</td>
</tr>
<tr>
<td>I/YR</td>
<td>The annual nominal interest rate.</td>
</tr>
<tr>
<td>PV</td>
<td>The present value of future cash flows. PV is usually an initial investment or loan amount and always occurs at the beginning of the first period.</td>
</tr>
<tr>
<td>PMT</td>
<td>The amount of periodic payments. All payments are equal, and none are skipped; payments can occur at the beginning or end of each period.</td>
</tr>
<tr>
<td>FV</td>
<td>The future value. FV is either a final cash flow or compounded value of a series of previous cash flows. FV occurs at the end of the last period.</td>
</tr>
<tr>
<td>P/YR</td>
<td>Stores the number of periods per year. The default is 12. Reset only when you wish to change.</td>
</tr>
<tr>
<td>XP/YR</td>
<td>Optional shortcut for storing N: Number in display is multiplied by the value in P/YR and stores result in N.</td>
</tr>
<tr>
<td>BEG/END</td>
<td>Switches between Begin and End mode. In Begin mode, the BEGIN annunciator is displayed.</td>
</tr>
</tbody>
</table>

To verify values, press [RCL] [N], [RCL] [I/YR], [RCL] [PV], [RCL] [PMT], and [RCL] [FV]. Pressing [RCL] [XP/YR] recalls the total number of payments in years and [RCL] [P/YR] shows you the number of payments per year. Recalling these numbers does not change the content of the registers.

Clearing TVM

Press [CLEAR ALL] to clear the TVM registers. This sets N, I/YR, PV, PMT, and FV to zero and briefly displays the current value in P/YR.

Begin and End Modes

Before you start a TVM calculation, identify whether the first periodic payment occurs at the beginning or end of the first period. If the first payment occurs at the end of the first period, set your HP-10B to End mode; if it occurs at the beginning of the first period, set your calculator to Begin mode.

To switch between modes, press [BEG/END]. The BEGIN annunciator is displayed when your calculator is in Begin mode. No annunciator is displayed when you are in End mode.

Mortgages and loans typically use End mode. Leases and savings plans typically use Begin mode.

Loan Calculations

Example: A Car Loan. You are financing a new car with a three year loan at 10.5% annual nominal interest, compounded monthly. The price of the car is $7,250. Your down payment is $1,500.

Part 1. What are your monthly payments at 10.5% interest? (Assume your payments start one month after the purchase or at the end of the first period.)
Part 3. If interest is 10.5%, what is the maximum you can spend on the car to lower your car payment to $175.00?

<table>
<thead>
<tr>
<th>Description</th>
<th>Display</th>
<th>Keys:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stores original interest rate.</td>
<td>10.50</td>
<td>10.5 [I/YR]</td>
</tr>
<tr>
<td>Stores desired payment.</td>
<td>-175.00</td>
<td></td>
</tr>
<tr>
<td>Calculates amount of money to finance.</td>
<td>5,384.21</td>
<td>[PV]</td>
</tr>
<tr>
<td>Adds the down payment to the amount financed for total price of the car.</td>
<td>6,884.21</td>
<td>[+ 1500 =]</td>
</tr>
</tbody>
</table>

Example: A Home Mortgage. You decide that the maximum monthly mortgage payment you can afford is $630.00. You can make a $12,000 down payment, and annual interest rates are currently 11.5%. If you obtain a 30 year mortgage, what is the maximum purchase price you can afford?

Part 2. At a price of $7,250.00, what interest rate is necessary to lower your payment by $10.00, to -176.89?

<table>
<thead>
<tr>
<th>Description</th>
<th>Display</th>
<th>Keys:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decreases payment from -186.89.</td>
<td>-176.89</td>
<td>[+ 10 PMT]</td>
</tr>
<tr>
<td>Calculates annual interest rate for the reduced payment.</td>
<td>6.75</td>
<td>[I/YR]</td>
</tr>
</tbody>
</table>
Example: A Mortgage With a Balloon Payment. You've obtained a 25 year, $72,500 mortgage at 13.8% annual interest. You anticipate that you will own the house for four years and then sell it, repaying the loan with a balloon payment. What will your balloon payment be?

Solve this problem using two steps:

1. Calculate the loan payment using a 25 year term.
2. Calculate the remaining balance after 4 years.

Step 1. First calculate the loan payment using a 25 year term.

\[PV = 72,500 \]

\[I/YR = 13.8\% \]
\[N = 25 \times 12 \]
\[P/YR = 12 \]

\[PMT = -861.65 \]

End Mode

Step 2. Since the payment is at the end of the month, the last payment and the balloon payment occur at the same time. The final payment is the sum of \(PMT \) and \(FV \).

\[PV = 72,500.00 \]

\[I/YR = 13.8\% \]
\[N = 4 \times 12 \]
\[P/YR = 12 \]

\[PMT = -861.65 \]

End Mode

\[FV = ? \]
The value in PMT should always be rounded to two decimal places when calculating FV or PV to avoid small, accumulative discrepancies between non-rounded numbers and actual (dollars and cents) payments. If the display is not set to two decimal places, press [DISP] 2.

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>[RND] PMT</td>
<td>-861.65</td>
<td>Rounds payment to two decimal places, then stores.</td>
</tr>
<tr>
<td>48 N</td>
<td>48.00</td>
<td>Stores 4 year term ((12 \times 4)) that you expect to own house.</td>
</tr>
<tr>
<td>FV</td>
<td>-70,725.90</td>
<td>Calculates loan balance after 4 years.</td>
</tr>
<tr>
<td>+ RCL PMT =</td>
<td>-71,587.55</td>
<td>Calculates total 48th payment (PMT) and (FV) to pay off loan (money paid out is negative).</td>
</tr>
</tbody>
</table>

Since this account has no regular payments \(PMT = 0\), the payment mode (End or Begin) is irrelevant.

Savings Calculations

Example: A Savings Account. If you deposit $2,000 in a savings account that pays 7.2% annual interest compounded annually, and make no other deposits to the account, how long will it take for the account to grow to $3,000?

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLEAR ALL</td>
<td>12 P_Yr 0.00</td>
<td>Displays a temporary message and clears all registers.</td>
</tr>
<tr>
<td>1 [P/YR]</td>
<td>1.00</td>
<td>Sets (P/YR) to 1 since interest is compounded annually.</td>
</tr>
<tr>
<td>2000 +/- PV</td>
<td>-2,000.00</td>
<td>Stores amount paid out for first deposit.</td>
</tr>
<tr>
<td>3000 FV</td>
<td>3,000.00</td>
<td>Stores the amount you wish to accumulate.</td>
</tr>
<tr>
<td>7.2 I/YR</td>
<td>7.20</td>
<td>Stores annual interest rate.</td>
</tr>
<tr>
<td>[N]</td>
<td>5.83</td>
<td>Calculates number of years it takes to reach $3,000.</td>
</tr>
</tbody>
</table>
Since the calculated value of \(N \) is between 5 and 6, it will take six years of annual compounding to achieve a balance of at least $3,000. Calculate the actual balance at the end of six years.

\[
\begin{align*}
6 \quad \text{N} & \quad 6.00 \quad \text{Sets N to 6 years.} \\
\text{FV} & \quad 3,035.28 \quad \text{Calculates amount you can withdraw after 6 years.}
\end{align*}
\]

Example: An Individual Retirement Account. You opened an individual retirement account on April 15, 1985, with a deposit of $2,000. Thereafter, you deposit $80.00 to the account at the end of each half-month. The account pays 8.3\% annual interest compounded semimonthly. How much will be in the account on April 15, 2000?

![Diagram of financial calculation](image)

Keys:
- **Display:** 12
- **Description:** Sets payments per year.
- **Display:** 400000
- **Description:** Stores your nest egg as an outgoing deposit.
- **Display:** 10
- **Description:** Stores annual interest rate you expect to earn.

Set to Begin mode. Press [BEG/END] if annunciator is not displayed.
Lease Calculations

A lease is a loan of valuable property (like real estate, automobiles, or equipment) for a specific amount of time, in exchange for regular payments. Some leases are written as purchase agreements, with an option to buy at the end of the lease (sometimes for as little as $1.00). The defined future value \((FV) \) of the property at the end of a lease is sometimes called the “residual value” or “buy out value.”

All five TVM application keys can be used in lease calculations. There are two common lease calculations.

- Finding the lease payment necessary to achieve a specified yield.
- Finding the present value (capitalized value) of a lease.

The first payment on a lease usually occurs at the beginning of the first period. Thus, most lease calculations use Begin mode.

Example: Calculating a Lease Payment. A customer wishes to lease a $13,500 car for three years. The lease includes an option to buy the car for $7,500 at the end of the lease. The first monthly payment is due the day the customer drives the car off the lot. If you want to yield 14% annually, compounded monthly, what will the payments be? Calculate the payments from your (the dealer’s) point of view.

Set to Begin mode. Press [BEG/END] if annunciator is not displayed.

Keys:

- 12 [P/YR] 12.00
- 14 [I/YR] 14.00
- 13500 [+] [PV] -13,500.00
- 7500 [FV] 7,500.00
- 36 [N] 36.00
- [PMT] 269.19

Description:

- Sets payments per year.
- Stores desired annual yield.
- Stores lease price.
- Stores residual (buy out value).
- Stores length of lease, in months.
- Calculates monthly lease payment.

Notice that even if the customer chooses not to buy the car, the lessor still includes a cash flow coming in at the end of the lease equal to the residual value of the car. Whether the customer buys the car or it is sold on the open market, the lessor expects to recover $7,500.

Example: Lease With Advance Payments. Your company, Quick-Kit Pole Barns, plans to lease a forklift for the warehouse. The lease is written for a term of 4 years with monthly payments of $2,400. Payments are due at the beginning of the month with the first and last payments due at the onset of the lease. You have an option to buy the forklift for $15,000 at the end of the leasing period.
If the annual interest rate is 18%, what is the capitalized value of the lease?

Begin Mode

\[PV = ? \]

\[\frac{1}{YR} = 18\% \]
\[N = 48 \]
\[P/YR = 12 \]

\[PMT = -2,400.00 \]

\(FV = -15,000.00 \)

This solution requires four steps.

1. Calculate the present value of the 47 monthly payments:
 \((4 \times 12) - 1 = 47\).

2. Add the value of the additional advance payment.

3. Find the present value of the buy option.

4. Sum the values calculated in steps 2 and 3.

Step 1. Find the present value of the monthly payments.

Set to Begin mode. Press \(\text{BEG/END}\) if annuiciator is not displayed.

Keys:

<table>
<thead>
<tr>
<th>[\text{Display:}]</th>
<th>[\text{Description:}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 (P/YR)</td>
<td>12.00</td>
</tr>
<tr>
<td>47 (N)</td>
<td>47.00</td>
</tr>
<tr>
<td>2400 (+/-) (PMT)</td>
<td>-2,400.00</td>
</tr>
</tbody>
</table>

Step 2. Add the additional advance payment to \(PV \). Store the answer.

\[\text{Add additional advance payment.} \]
\[\text{Stores result in M register.} \]

Step 3. Find the present value of the buy option.

\[48 \(N \) \quad 48.00 \]
\[0 \(PMT \) \quad 0.00 \]
\[15000 \(+/- \) \(FV \) \quad -15,000.00 \]
\[\text{Stores value to discount.} \]
\[\text{Calculates present value of last cash flow.} \]

Step 4. Add the results of steps 2 and 3.

Keys:

\[\text{Display:} \]
\[\text{Description:} \]

\[91,476.00 \]

Calculates present (capitalized) value of lease. (Rounding discrepancies are explained on page 58.)
Amortization is the process of dividing a payment into the amount that applies to interest and the amount that applies to principal. Payments near the beginning of a loan contribute more interest, and less principal, than payments near the end of a loan.

The **[AMORT]** function assumes you have just calculated a payment or you have stored the appropriate amortization values in **I/YR**, **PV**, **PMT**, and **P/YR**.

- **I/YR** Annual nominal interest rate.
- **PV** Starting balance.
- **PMT** Payment amount (rounded to the display format).
- **P/YR** Number of payments per year.

The numbers displayed for interest, principal, and balance are rounded to the current display setting.

To Amortize. To amortize a single payment, enter the period number and press **INPUT**, then press **[AMORT]**. The HP-10B displays the message **PEr** followed by the starting and ending payments that will be amortized.

Hold **[** down to display the label of the value that you are about to view. Press **[** to see interest (Int). Press **[** again to see the principal (Prin) and again to see the balance (bAL). Continue pressing **[** to cycle through the same values again.

To amortize a range of payments, enter starting period number **INPUT** ending period number, then press **[AMORT]**. The HP-10B displays the message **PEr** followed by the starting and ending payments that will be amortized. Then press **[** repeatedly to cycle through interest, principal, and balance.

Press **[AMORT]** again to move to the next set of periods. This autoincrement feature saves you the keystrokes of entering the new starting and ending periods.

If you store, recall, or perform any other calculations during amortization, pressing **[** will no longer cycle through interest, principal, and balance. To resume amortization with the same set of periods, press **RCL** **[AMORT]**.
Example: Amortizing a Range of Payments. Calculate the first two years of the annual amortization schedule for a 30 year, $80,000 mortgage, at 9.75% annual interest with monthly payments.

Set to End mode. Press [BEG/END] if BEGIN annunciator is displayed.

Keys:

<table>
<thead>
<tr>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 [P/YR]</td>
<td>Sets payments per year.</td>
</tr>
<tr>
<td>30 [xP/YR]</td>
<td>Stores total number of payments.</td>
</tr>
<tr>
<td>9.75 [I/YR]</td>
<td>Stores interest per year.</td>
</tr>
<tr>
<td>80000 [PV]</td>
<td>Stores present value.</td>
</tr>
<tr>
<td>0 [FV]</td>
<td>Stores future value.</td>
</tr>
<tr>
<td>PMT</td>
<td>Calculates monthly payment.</td>
</tr>
</tbody>
</table>

The amount paid toward interest and principal \((7,731.67 + 516.17 = 8,247.84)\) equals the total of 12 monthly payments \((12 \times 687.32 = 8,247.84)\). The remaining balance equals the initial mortgage less the amount applied toward principal \((80,000 - 468.42 - 516.17 = 79,015.41)\). More money is applied to principal during the second rather than the first year. The succeeding years continue in the same fashion.

Example: Amortizing a Single Payment. Amortize the 1st, 25th, and 54th payments of a five year car lease. The lease amount is $14,250 and the interest rate is 11.5%. Payments are monthly and begin immediately.

Set to Begin mode. Press [BEG/END] if annunciator is not displayed.

Keys:

<table>
<thead>
<tr>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 [P/YR]</td>
<td>Sets payments per year.</td>
</tr>
<tr>
<td>5 [xP/YR]</td>
<td>Stores number of payments.</td>
</tr>
<tr>
<td>11.5 [I/YR]</td>
<td>Stores interest per year.</td>
</tr>
<tr>
<td>14250 [PV]</td>
<td>Stores present value.</td>
</tr>
<tr>
<td>0 [FV]</td>
<td>Stores the future value.</td>
</tr>
<tr>
<td>PMT</td>
<td>Calculates monthly payment.</td>
</tr>
</tbody>
</table>
Amortize the 1st, 25th, and 54th payments.

<table>
<thead>
<tr>
<th>INPUT</th>
<th>1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMORT</td>
<td>PEr 1 - 1</td>
</tr>
<tr>
<td></td>
<td>Displays amortized payment period.</td>
</tr>
<tr>
<td>Int</td>
<td>Displays interest.</td>
</tr>
<tr>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Prin</td>
<td>Displays first principal payment.</td>
</tr>
<tr>
<td>-310.42</td>
<td></td>
</tr>
<tr>
<td>bAL</td>
<td>Displays loan balance after one payment.</td>
</tr>
<tr>
<td>13,939.58</td>
<td></td>
</tr>
<tr>
<td>25 INPUT</td>
<td>Enters payment to amortize.</td>
</tr>
<tr>
<td>AMORT</td>
<td>PEr 25 - 25</td>
</tr>
<tr>
<td></td>
<td>Displays amortized payment period.</td>
</tr>
<tr>
<td>Int</td>
<td>Displays interest paid on 25th payment.</td>
</tr>
<tr>
<td>-90.21</td>
<td></td>
</tr>
<tr>
<td>Prin</td>
<td>Displays principal paid on 25th payment.</td>
</tr>
<tr>
<td>-220.21</td>
<td></td>
</tr>
<tr>
<td>bAL</td>
<td>Displays balance after 25th payment.</td>
</tr>
<tr>
<td>9,193.28</td>
<td></td>
</tr>
<tr>
<td>54 INPUT</td>
<td>Enters payment to amortize.</td>
</tr>
<tr>
<td>AMORT</td>
<td>PEr 54 - 54</td>
</tr>
<tr>
<td></td>
<td>Displays amortized payment period.</td>
</tr>
<tr>
<td>Int</td>
<td>Displays interest paid on 54th payment.</td>
</tr>
<tr>
<td>-20.05</td>
<td></td>
</tr>
<tr>
<td>Prin</td>
<td>Displays principal paid on 54th payment.</td>
</tr>
<tr>
<td>-290.37</td>
<td></td>
</tr>
<tr>
<td>bAL</td>
<td>Displays balance after 54th payment.</td>
</tr>
<tr>
<td>1,801.57</td>
<td></td>
</tr>
</tbody>
</table>

Interest Rate Conversions

The Interest Conversion application uses three keys: □NOM%, □EFF%, and □P/YR. They convert between nominal and annual effective interest rates. Nominal and effective interest rates are described on page 47.

If you know an annual nominal interest rate and you wish to solve for the corresponding annual effective rate:

1. Enter the nominal rate and press □NOM%.
2. Enter the number of compounding periods and press □P/YR.
3. Calculate the effective rate by pressing □EFF%.

To calculate a nominal rate from a known effective rate:

1. Enter the effective rate and press □EFF%.
2. Enter the number of compounding periods and press □P/YR.
3. Calculate the nominal rate by pressing □NOM%.

In the TVM application, □NOM% and □I/YR share the same register.

Interest conversions are used primarily for two types of problems:
- Comparing investments with different compounding periods.
- Solving TVM problems where the payment period and the interest period differ.

Investments With Different Compounding Periods

Example: Comparing Investments. You are considering opening a savings account in one of three banks. Which bank has the most favorable interest rate?
First Bank 6.70% annual interest, compounded quarterly.
Second Bank 6.65% annual interest, compounded monthly.
Third Bank 6.63% annual interest, compounded 360 times per year.

First Bank.

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.7 [NOM%]</td>
<td>6.70</td>
<td>Stores nominal rate.</td>
</tr>
<tr>
<td>4 [P/YR]</td>
<td>4.00</td>
<td>Stores quarterly compounding periods.</td>
</tr>
<tr>
<td>[EFF%]</td>
<td>6.87</td>
<td>Calculates annual effective rate.</td>
</tr>
</tbody>
</table>

Second Bank.

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.65 [NOM%]</td>
<td>6.65</td>
<td>Stores nominal rate.</td>
</tr>
<tr>
<td>12 [P/YR]</td>
<td>12.00</td>
<td>Stores monthly compounding periods.</td>
</tr>
<tr>
<td>[EFF%]</td>
<td>6.86</td>
<td>Calculates annual effective rate.</td>
</tr>
</tbody>
</table>

Third Bank.

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.63 [NOM%]</td>
<td>6.63</td>
<td>Stores nominal rate.</td>
</tr>
<tr>
<td>360 [P/YR]</td>
<td>360.00</td>
<td>Stores compounding periods.</td>
</tr>
<tr>
<td>[EFF%]</td>
<td>6.85</td>
<td>Calculates annual effective rate.</td>
</tr>
</tbody>
</table>

First Bank offers a slightly better deal since 6.87 is greater than 6.86 and 6.85.

Compounding and Payment Periods Differ

The TVM application assumes that the compounding periods and the payment periods are the same. Some loan installments or savings deposits and withdrawals do not coincide with the bank’s compounding periods. If the payment period differs from the compounding period, adjust the interest rate to match the payment period before solving the problem.

To adjust an interest rate when the compounding period differs from the payment period complete the following steps:

1. Enter the nominal rate and press [NOM%]. Enter the number of compounding periods in a year and press [P/YR]. Solve for the effective rate by pressing [EFF%].
2. Enter the number of payment periods in a year and press [P/YR]. Solve for the adjusted nominal rate by pressing [NOM%].

Example: Monthly Payments, Daily Compounding. Starting today, you make monthly deposits of $25 to an account paying 5% interest, compounded daily (using a 365 day year). What will the balance be in seven years?

Step 1. Calculate the equivalent rate with monthly compounding.

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 [NOM%]</td>
<td>5.00</td>
<td>Stores nominal percentage rate.</td>
</tr>
<tr>
<td>365 [P/YR]</td>
<td>365.00</td>
<td>Stores bank’s compounding periods per year.</td>
</tr>
<tr>
<td>[EFF%]</td>
<td>5.13</td>
<td>Calculates annual effective rate.</td>
</tr>
<tr>
<td>12 [P/YR]</td>
<td>12.00</td>
<td>Stores monthly periods.</td>
</tr>
<tr>
<td>[NOM%]</td>
<td>5.01</td>
<td>Calculates equivalent nominal percentage rate for monthly compounding.</td>
</tr>
</tbody>
</table>

Since NOM% and I/YR share the same register, this value is ready for use in the rest of the problem.
Step 2. Calculate the future value.

Set to Begin mode. Press [BEG/END] if annunciator is not displayed.

0 [PV] 0.00 Stores present value.
25 +/- [PMT] -25.00 Stores payment.
7 [xP/YR] 84.00 Stores number of payments per year.

[FV] 2,519.61 Calculates balance after 7 years.

Cash Flow Calculations

How to Use the Cash Flow Application

The cash flow application is used to solve problems where cash flows occur over regular intervals but are of varying amounts. You can also use cash flow calculations to solve problems with regular, equal, periodic cash flows, but these situations are handled more easily using TVM.

In general, these are the steps for cash flow calculations on the HP-10B.

1. Organize your cash flows on paper—a cash flow diagram is useful.
2. Clear the registers.
3. Enter the number of periods per year.
4. Enter the amount of the initial investment.
5. Enter the amount of the next cash flow.
6. If the amount entered in step 5 occurs more than once consecutively, enter the number of times it occurs.
7. Repeat steps 5 and 6 for each cash flow and group.
8. To calculate net present value, enter the annual interest rate and press [I/YR]; then press [NPV]. Or, to calculate annual internal rate of return, press [IRR/YR].

Example: A Short Term Investment. The following cash flow diagram represents an investment in stock over three months. Purchases were made at the beginning of each month, and the stock was sold at the end of the third month. Calculate the annual internal rate of return and the monthly rate of return.
NPV and IRR/YR: Discounting Cash Flows

Chapter 4 demonstrates the use of cash flow diagrams to clarify financial problems. This section describes discounted cash flows. The NPV and IRR/YR functions are frequently referred to as discounted cash flow functions.

When a cash flow is discounted, you calculate its present value. When multiple cash flows are discounted, you calculate the present values and add them together.

The net present value (NPV) function finds the present value of a series of cash flows. The annual nominal interest rate must be known to calculate NPV.

The internal rate of return (IRR/YR) function calculates the annual nominal interest rate that is required to give a net present value of zero.

The utility of these two financial tools becomes clear after working a few examples. The next two sections describe organizing and entering your cash flows. Examples of NPV and IRR/YR calculations follow.

Organizing Cash Flows

The cash flow series is organized into an initial cash flow (CF 0) and succeeding cash flow groups (up to 14 cash flows). CF 0 occurs at the beginning of the first period. A cash flow group consists of a cash flow amount and the number of times it repeats.

For example, in the following cash flow diagram, the initial cash flow is −$11,000. The next group of cash flows consists of six flows of zero each, followed by a group of three $1,000 cash flows. The final group consists of one $10,000 cash flow.

Keys:

<table>
<thead>
<tr>
<th>1 CLEAR ALL</th>
<th>Display:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

| 12 [P/YR] |
| 12.00 |

| 5000 [+/–] [CF] |
| CF 0 |
| -5,000.00 |

| 2000 [+/–] [CF] |
| CF 1 |
| -2,000.00 |

| 4000 [+/–] [CF] |
| CF 2 |
| -4,000.00 |

| 1765.29 [CF] |
| CF 3 |
| 11,765.29 |

| [IRR/YR] |
| 38.98 |

| 12 [%] |
| 3.25 |
Example. Enter the cash flows from the preceding diagram and calculate the IRR/YR. Then calculate the effective interest rate. Assume there are 12 periods per year.

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLEAR ALL</td>
<td>0.00</td>
<td>Clears all registers.</td>
</tr>
<tr>
<td>10000 [+/-] [CF]</td>
<td>-11,000.00</td>
<td>Enters initial cash flow. Displays cash flow group number for as long as you hold down [CF].</td>
</tr>
<tr>
<td>0 [CF]</td>
<td>CF 1</td>
<td>Enters first cash flow group amount.</td>
</tr>
<tr>
<td>6 [N]</td>
<td>n 1</td>
<td>Enters number of repetitions.</td>
</tr>
<tr>
<td>1000 [CF]</td>
<td>CF 2</td>
<td>Enters second cash flow group amount.</td>
</tr>
<tr>
<td>3 [N]</td>
<td>n 2</td>
<td>Enters number of repetitions.</td>
</tr>
<tr>
<td>10000 [CF]</td>
<td>CF 3</td>
<td>Enters final cash flow.</td>
</tr>
</tbody>
</table>

Whenever you enter a series of cash flows, it is important to account for every period on the cash flow diagram, even periods with cash flows of zero.

Entering Cash Flows

The HP-10B can store an initial cash flow plus 14 additional cash flow groups. Each cash flow group can have up to 99 cash flows. The cash flows are stored in registers R₀ through R₉ and R₀ through R₄. Enter cash flows using the following steps:

1. Press **CLEAR ALL** to clear the registers.
2. Enter the number of periods per year and press **[P/YR]**.
3. Enter the amount of the initial investment, then press **[CF]**. (The "j" stands for the cash flow “number,” 0 through 14.)
4. Enter the amount of the next cash flow and press **[CF]**.
5. If the amount entered in step 4 occurs more than once consecutively, enter the number of times it occurs, and press **[N]**.
6. Repeat steps 4 and 5 for each **[CF]** and **[N]** until all cash flows have been entered.

Viewing and Replacing Cash Flows

To view a cash flow list press the following:

1. **[RCL]** 0 to see the initial cash flow.
2. **[RCL]** **[CF]** to see the next flow.
3. **[RCL]** **[N]** to see the number of times the cash flow occurs.

Repeat steps 2 and 3 until all cash flows are reviewed.

You can also view cash flows individually by pressing **[RCL]**, followed by a register number. Register numbers coincide with cash flow numbers. For example, press **[RCL]** 4 to see cash flow 4, then **[RCL]** **[N]** to see the number of consecutive occurrences.
To replace a cash flow, enter the new cash flow and press [STO] followed by the cash flow (register) number.

To replace the number of times a particular cash flow occurs, [RCL] the cash flow whose number of occurrences will change. Then, enter the number of times it occurs and press [N].

To replace both the cash flow and number of times it occurs, enter the new cash flow, press [STO] followed by the cash flow (register) number. Then enter the number of times it occurs and press [N].

Since cash flows cannot be deleted or inserted, use [CLEAR ALL] to start over.

Calculating Net Present Value

The net present value (NPV) function is used to discount all cash flows to the front of the time line using an annual nominal interest rate that you supply.

These steps describe how to calculate [NPV]:

1. Press [CLEAR ALL], store number of periods per year in P/YR.
2. Enter the cash flows using [CF] and [N].
3. Store the annual nominal interest rate in I/YR and press [NPV].

Example: A Discounted Contract, Uneven Cash Flows. You have an opportunity to purchase a contract with the following cash flows:

<table>
<thead>
<tr>
<th>End Of Month</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>$5,000.00</td>
</tr>
<tr>
<td>9</td>
<td>$5,000.00</td>
</tr>
<tr>
<td>10</td>
<td>$5,000.00</td>
</tr>
<tr>
<td>15</td>
<td>$7,500.00</td>
</tr>
<tr>
<td>25</td>
<td>$10,000.00</td>
</tr>
</tbody>
</table>

How much should you pay for the contract if you wish to yield a yearly rate of 15% on your investment?
The cash flows that describe your prospective investment are now in the calculator. You can press [RCL] 0, followed by [RCL] CF and [RCL] N, repeatedly to view the cash flows and number of times each occurs.

Now that you have entered the cash flows, store the interest rate and calculate the net present value.

Keys:

<table>
<thead>
<tr>
<th>Description:</th>
<th>Display:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stores annual interest rate.</td>
<td>15.00</td>
</tr>
<tr>
<td>Calculates net present value of stored cash flows. (See rounding example on page 58.)</td>
<td>27,199.92</td>
</tr>
</tbody>
</table>

This result shows that if you want a yield of 15% per year, you should pay $27,199.92 for the contract. Notice that this amount is positive. The net present value is simply the summed (or netted) value of a series of cash flows when they are discounted to the front of the time line.

Calculating Internal Rate of Return

1. Press [CLEAR ALL], store number of periods per year in P/YR.
2. Enter the cash flows using CF and N.
3. Press IRR/YR.

When you calculate IRR/YR, you get the annual nominal rate that gives an NPV of zero.

The following example uses the cash flows that were entered in the previous example.

More than one IRR/YR can exist. If you get the no Solution message see Appendix B (page 127).

Example. If the seller of the contract in the previous example wants $28,000 and you accept that price, what is your yield? This is an IRR/YR calculation that requires a slight modification to the currently stored cash flows.
Statistical Calculations

The [+] and [-] keys are used to enter and delete data for one- and two-variable statistics. Summation data is accumulated in registers R₁ through R₉. The register labels at the lower right of the keys indicate what statistical data is stored in each register. Once you enter the data, you can use the statistical functions to calculate the following:

- Mean and standard deviation.
- Linear regression statistics.
- Linear estimation and forecasting.
- Weighted mean.
- Summation statistics: n, Σx, Σx², Σy, Σy², and Σxy.

Automatic Storage of IRR/YR and NPV

When you calculate NPV, the result is stored in PV for your convenience. To recall that result, press [RCL] [PV]. If you haven’t changed the TVM values from the last example using NPV (page 82), when you press [RCL] [PV] the result is 27,199.92.

When you calculate IRR/YR, the result is also stored in I/YR. For the previous example, press [RCL] [I/YR] to display the annualized yield 12.49.

Clearing Statistical Data

Clear the statistical registers before entering new data so that R₄ through R₉ are zero when you begin. If you don’t clear the registers, data currently stored in R₁ through R₉ is automatically included in the summation calculations. To clear the statistical registers, press [CL ‡]. The display is also cleared.
Entering Statistical Data

There is no limit to the number of values you can accumulate in the statistical registers.

One-Variable Statistics

To enter x data for one-variable statistics complete the following steps:

1. Clear the contents of R_4 through R_9 by pressing [CL].
2. Enter the first value and press $\text{[Σ+]}. \text{ The HP-10B displays } n, \text{ the number of items accumulated.}$
3. Continue accumulating values by entering the numbers and pressing $\text{[Σ+].} \text{ The } n \text{-value is incremented with each entry.}$

Two-Variable Statistics and Weighted Mean

To enter x,y pairs of statistical data complete these steps:

1. Clear the contents of R_4 through R_9 by pressing [CL].
2. Enter the first x-value and press $\text{[INPUT].} \text{ The HP-10B displays the } x \text{-value and the } \downarrow \text{ annunciator appears in the display.}$
3. Enter the corresponding y-value and press $\text{[Σ+].} \text{ The HP-10B displays } n, \text{ the number of pairs of items accumulated.}$
4. Continue entering x,y pairs. The n-value is incremented with each entry.

To enter data for calculating the weighted mean, enter each data value as x, and its corresponding weight as y.

Correcting Statistical Data

Incorrect entries can be deleted using $\text{[Σ-]}. \text{ If either value of an } x,y \text{ pair is incorrect, you must delete and reenter both values.}$

Correcting One-Variable Data

To delete and reenter statistical data:

1. Key in the x-value to be deleted.
2. Press [Σ-] to delete the value. The n-value is decreased by one.
3. Enter the correct value using [Σ+].

Correcting Two-Variable Data

To delete and reenter x,y pairs of statistical data:

1. Key in the x-value, press [INPUT] and then key in the y-value.
2. Press [Σ-] to delete the values. The n-value is decreased by one.
3. Enter the correct x,y pair using [INPUT] and [Σ+].

* If statistical data causes the value of a register to exceed $\pm 9.99999999999 \times 10^{499}$, the HP-10B displays a temporary overflow warning (OFLO).
Summary of Statistical Calculations

Some functions return two values. The : annunciator indicates that two values have been returned. Press [SWAP] to see the hidden value.

<table>
<thead>
<tr>
<th>Keys</th>
<th>Description</th>
<th>[SWAP] to Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>[x,y]</td>
<td>Arithmetic mean (average) of the x-values.</td>
<td>Mean (average) of the y-values if you entered y-data.</td>
</tr>
<tr>
<td>[FM]</td>
<td>Mean of the x-values weighted by the y-values.</td>
<td></td>
</tr>
<tr>
<td>[sx,sy]</td>
<td>Sample standard deviation of the x-values.*</td>
<td>Sample standard deviation of the y-values if you entered y-data.*</td>
</tr>
<tr>
<td>[sx,sy]</td>
<td>Population standard deviation of the x-values.*</td>
<td>Population standard deviation of the y-values if you entered y-data.*</td>
</tr>
<tr>
<td>y-value</td>
<td>Estimate of x for a given value of y.</td>
<td>Correlation coefficient.†</td>
</tr>
<tr>
<td>[x]</td>
<td>Estimate of y for a given value of x.</td>
<td>Slope (m) of calculated line.</td>
</tr>
<tr>
<td>[y,m]</td>
<td>y-intercept (b) of the calculated line.</td>
<td>Slope (m) of the calculated line.</td>
</tr>
</tbody>
</table>

* The sample standard deviation assumes that the data is a sampling of a larger, complete set of data. The population standard deviation assumes that the data constitutes the entire population.

† The correlation coefficient is a number in the range -1 through +1 that measures how closely the data fits the calculated line. A value of +1 indicates a perfect positive correlation, and -1 indicates a perfect negative correlation. A value close to zero indicates the line is a poor fit.

Mean, Standard Deviations, and Summation Statistics

You can calculate the mean (x̄), sample standard deviation (sx), and population standard deviation (σx), and summation statistics, n, Σx, and Σx² of x-data. For x,y data, you can also calculate the mean, sample standard deviation, and population standard deviation of the y-data and the summation statistics Σy, Σy², and Σxy.

Example 1. A yacht captain wants to determine how long it takes to change a sail. She randomly chooses six members of her crew, observes them as they carry out the sail change, and records the number of minutes required: 4.5, 4, 2, 3.25, 3.5, 3.75. Calculate the mean and sample standard deviation of the times. Also, calculate the root mean square, using the formula \(\sqrt{\frac{\Sigma x^2}{n}} \):

<table>
<thead>
<tr>
<th>Keys</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>[CL 2]</td>
<td>0.00</td>
<td>Clears statistical registers.</td>
</tr>
<tr>
<td>4.5</td>
<td>1.00</td>
<td>Enters first time.</td>
</tr>
<tr>
<td>4+</td>
<td>2.00</td>
<td>Enters second time.</td>
</tr>
<tr>
<td>2+</td>
<td>3.00</td>
<td>Enters third time.</td>
</tr>
<tr>
<td>3.25+</td>
<td>4.00</td>
<td>Enters fourth time.</td>
</tr>
<tr>
<td>3.5+</td>
<td>5.00</td>
<td>Enters fifth time.</td>
</tr>
<tr>
<td>3.75+</td>
<td>6.00</td>
<td>Enters sixth time.</td>
</tr>
<tr>
<td>$\mathbf{\Sigma x, \Sigma y}$</td>
<td>3.50</td>
<td>Calculates the mean.</td>
</tr>
<tr>
<td>$\mathbf{\Sigma x, \Sigma y}$</td>
<td>0.85</td>
<td>Calculates the sample standard deviation.</td>
</tr>
<tr>
<td>$\mathbf{\Sigma x^2}$</td>
<td>7.713</td>
<td>Displays Σx^2.</td>
</tr>
<tr>
<td>$\mathbf{\Sigma x^2}$</td>
<td>6.00</td>
<td>Displays n.</td>
</tr>
<tr>
<td>$\mathbf{\Sigma x^2}$</td>
<td>3.59</td>
<td>Calculates the root mean square.</td>
</tr>
</tbody>
</table>

The standard deviations calculated by $\mathbf{\Sigma x, \Sigma y}$ and $\mathbf{\Sigma x, \Sigma y}$ $\mathbf{\Sigma x, \Sigma y}$ are the sample standard deviations. They assume that the data is a sampling of a larger, complete set of data.

If the data constitutes the entire population, the true population standard deviations can be calculated by pressing $\mathbf{\Sigma x, \Sigma y}$ and $\mathbf{\Sigma x, \Sigma y}$ $\mathbf{\Sigma x, \Sigma y}$ \mathbf{SWAP}.

Example 2. The coach has four new players on the team with heights of 193, 182, 177, and 185 centimeters and weights of 90, 81, 83, and 77 kilograms. Find the mean and population standard deviation of both their heights and weights, then sum the y-data.

Keys:

<table>
<thead>
<tr>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbf{\Sigma x}$</td>
<td>Clears statistical registers.</td>
</tr>
<tr>
<td>193 $\mathbf{\Sigma x}$ 90 $\mathbf{\Sigma x}$ 1.00</td>
<td>Enters height and weight of player 1.</td>
</tr>
<tr>
<td>182 $\mathbf{\Sigma x}$ 81 $\mathbf{\Sigma x}$ 2.00</td>
<td>Enters height and weight of player 2.</td>
</tr>
</tbody>
</table>

Linear Regression and Estimation

Linear regression, is a statistical method for estimation and forecasting. It is used to find a straight line that best fits a set of x,y data. There must be at least two different x,y pairs. The straight line provides a relationship between the x- and y-variables: $y = mx + b$, where m is the slope and b is the y-intercept.

Linear Regression. Calculate m, b, and r (the correlation coefficient), in three steps.

1. Enter the x,y data using the instructions on page 86.
2. To display b (the y-intercept), press $\mathbf{\Sigma y}$ $\mathbf{\Sigma m}$. Then press $\mathbf{\Sigma SWAP}$ to display m (the slope of the line).
3. Press $\mathbf{\Sigma y}$ $\mathbf{\Sigma SWAP}$ to display r, the correlation coefficient.
Linear Estimation. The straight line calculated by linear regression can be used to estimate a y-value for a given x-value, or vice versa:

1. Enter the x,y-data using the instructions on page 86.
2. Enter the known x-value or y-value.
 - To estimate x for the given y, enter the y-value, then press [x,t,θ,n].
 - To estimate y for the given x, enter the x-value, then press [y,x].

Example: Forecasting. Ali's Azaleas advertises on a local radio station. For the past six weeks, the manager has kept records of the number of minutes of advertising that were purchased, and the sales for that week.

<table>
<thead>
<tr>
<th>Week</th>
<th>Minutes of Advertising (x-values)</th>
<th>Sales (y-values)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>2</td>
<td>$1,400</td>
</tr>
<tr>
<td>Week 2</td>
<td>1</td>
<td>$ 920</td>
</tr>
<tr>
<td>Week 3</td>
<td>3</td>
<td>$1,100</td>
</tr>
<tr>
<td>Week 4</td>
<td>5</td>
<td>$2,265</td>
</tr>
<tr>
<td>Week 5</td>
<td>5</td>
<td>$2,890</td>
</tr>
<tr>
<td>Week 6</td>
<td>4</td>
<td>$2,200</td>
</tr>
</tbody>
</table>

What is the y-intercept, the slope, and the correlation coefficient?

Keys:
- CL Σ
- INPUT 1400 Σ+
- INPUT 920 Σ+
- INPUT 1100 Σ+
- INPUT 2265 Σ+
- INPUT 2890 Σ+
- INPUT 2200 Σ+
- y,x
- [x,t,θ,n]
- [swap]
- [x,t,θ,n] [swap]

Display:
0.00
1.00
2.00
3.00
4.00
5.00
6.00
376.25
425.88
0.90

Description:
- Clears statistical registers.
- Enters minutes and sales for consecutive weeks.
- Calculates y-intercept (b).
- Displays slope.
- Calculates correlation coefficient.

Estimate what the level of sales would be if the business purchased 7 or 8 minutes of advertising.
How many minutes of advertising should Ali's buy to attain sales of $3,000?

7 \(\sum x \) 3,357.38 Estimates sales if 7 minutes of advertising were purchased.

8 \(\sum x \) 3,783.25 Estimates sales if 8 minutes were purchased.

Estimates minutes of advertising required for $3,000 in sales.

Weighted Mean

The following procedure calculates the weighted mean of data points \(x_1, x_2, \ldots, x_n \) occurring with weights \(y_1, y_2, \ldots, y_n \).

1. Use [INPUT] and \(\sum x \) to enter \(x, y \) pairs. The \(y \)-values are the weights of the \(x \)-values.

2. Press [fw].

Example. A survey of 266 one-bedroom rental apartments reveals that 54 of them rent for $200 per month, 32 for $205, 88 for $210, and 92 for $216. What is the average monthly rent?

Keys:

\[
\begin{align*}
\text{CL} & : 0.00 \\
200 \text{ [INPUT]} & : 1.00 \\
205 \text{ [INPUT]} & : 2.00 \\
210 \text{ [INPUT]} & : 3.00 \\
216 \text{ [INPUT]} & : 4.00 \\
\sum x & : 209.44
\end{align*}
\]

Description:

- Clears statistics memory.
- Enters first rent and its weight.
- Enters second rent and its weight.
- Enters third rent and its weight.
- Enters fourth rent and its weight.
- Calculates weighted mean.

Return to the sample calculations.

Additional Examples

Business Applications

Setting a Sales Price

One method for setting the per unit sales price is to determine the cost of production per unit, and then multiply by the desired rate of return. For this method to be accurate, you must identify all costs associated with the product.

The following equation calculates unit price based on total cost and rate of return:

\[
\text{PRICE} = \frac{\text{TOTAL COST}}{\text{NUMBER OF UNITS}} \times (1 + \left(\frac{\%RTN}{100} \right))
\]

Example. To produce 2,000 units, your cost is $40,000. You want a 20% rate of return. What price should you charge per unit?

Keys:

\[
\begin{align*}
40000 \div & : 40000.00 \\
2000 \times & : 20.00 \\
[1 + 20 \div] & : 24.00
\end{align*}
\]

Description:

- Enters cost.
- Calculates unit cost.
- Calculates unit sales price.

Forecasting Based on History

One method of forecasting sales, manufacturing rates, or expenses is reviewing historical trends. Once you have historical data, the data are fit to a curve that has time on the \(x \)-axis and quantity on the \(y \)-axis.
Example. Given the following sales data, what are the sales estimates for years six and seven?

<table>
<thead>
<tr>
<th>Year</th>
<th>Sales $</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10,000</td>
</tr>
<tr>
<td>2</td>
<td>11,210</td>
</tr>
<tr>
<td>3</td>
<td>13,060</td>
</tr>
<tr>
<td>4</td>
<td>16,075</td>
</tr>
<tr>
<td>5</td>
<td>20,590</td>
</tr>
</tbody>
</table>

Cost of Not Taking a Cash Discount

A cash discount gives a buyer a reduction in price if the payment is made within a specified time period. For example, “2/10, NET/30” means that the buyer can deduct 2 percent if payment is made within 10 days. If payment is not made within 10 days, the full amount must be paid by the 30th day.

You can use the equation shown below to calculate the cost of failing to take the cash discount. The cost is calculated as an annual interest rate charged for delaying payment.

Example. You receive a bill with the credit terms 2/10, NET/30. What is the cost of not taking the cash discount?

Keys:

<table>
<thead>
<tr>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>[CL x] 0.00</td>
<td>Clears statistics registers.</td>
</tr>
<tr>
<td>INPUT 10000 =+ 1.00</td>
<td>Enters first year and sales for that year.</td>
</tr>
<tr>
<td>2 INPUT 11210 =+ 2.00</td>
<td>Enters second year’s data.</td>
</tr>
<tr>
<td>3 INPUT 13060 =+ 3.00</td>
<td>Continues data entry.</td>
</tr>
<tr>
<td>4 INPUT 16075 =+ 4.00</td>
<td></td>
</tr>
<tr>
<td>5 INPUT 20590 =+ 5.00</td>
<td></td>
</tr>
<tr>
<td>6 2,30,10 2,30,10</td>
<td>Estimates sales for year six.</td>
</tr>
<tr>
<td>7 2,30,10 2,30,10</td>
<td>Estimates sales for year seven.</td>
</tr>
</tbody>
</table>

Loans and Mortgages

Simple Annual Interest

Example. Your good friend needs a loan to start his latest enterprise and has requested that you lend him $450 for 60 days. You lend him the money at 10% simple annual interest, to be calculated on a 365-day basis. How much interest will he owe you in 60 days, and what is the total amount owed?

This equation is used for calculating simple annual interest using a 365 day year:

\[
\text{INTEREST} = \frac{\text{LOAN AMOUNT} \times \text{INTEREST}\% \times \text{TERM OF LOAN (IN DAYS)}}{365}
\]
Continuous Compounding

The equation for calculating an effective rate for continuous compounding is:

\[
EFF \% = (e^{(\text{NOM}\% \times 100)} - 1) \times 100
\]

To solve a continuous compounding problem complete these steps:

1. Compute the annual compounding rate using the above equation.
2. Either use this effective rate in your calculations with an annual period \((P/YR = 1)\) or convert this rate so that it applies to your payment period. In the following example, \(P/YR = 12\) so you have to calculate a new \(NOM\%\) using the interest rate conversion application with \(P/YR\) equal to 12.

Example. You currently have $4,572.80 in an account at Dream World Investments that earns 18% annual interest compounded continuously. At the end of each month, you deposit $250.00 in the account. What will the balance be after 15 years?

Keys:

| 450 [REM] | 10 % |
| × 60 ÷ 365 [÷] |
| 457.40 |

Display:

| 0.10 |
| 7.40 |
| 457.40 |

Description:

Stores interest.

Calculates interest owed.

Calculates total owed.

\[\text{NOM}\%\]

18.14

Calculates annual nominal rate for a monthly payment period.

Set to End Mode. Press \[\text{BEG/END}\] if BEGIN annunciator is displayed.

| 15 \[\text{XP/YR}\] |
| 180.00 |

Stores number of months.

| 250 [+/-] \[\text{PMT}\] |
| -250.00 |

Stores regular payment.

| 4572.8 [+/-] \[\text{PV}\] |
| -4,572.80 |

Stores current balance as a negative value (like an initial investment).

\[\text{FV}\]

297,640.27

Calculates account balance after 15 years of payments with 18% interest compounded continuously.

Yield of a Discounted (or Premium) Mortgage

The annual yield of a mortgage bought at a discount or premium can be calculated given the original mortgage amount \((PV)\), interest rate \((I/YR)\), periodic payment \((PMT)\), balloon payment amount \((FV)\), and the price paid for the mortgage (new \(PV\)).

Remember the cash flow sign convention: money paid out is negative; money received is positive.

Example. An investor wishes to purchase a $100,000 mortgage taken out at 9% for 20 years. Since the mortgage was issued, 42 monthly payments have been made. The loan is to be paid in full (a balloon payment) at the end of its fifth year. What is the yield to the purchaser if the price of the mortgage is $79,000?

Step 1. Calculate \(PMT\). Make sure \(FV = 0\).

Set to End Mode. Press \[\text{BEG/END}\] if BEGIN annunciator is displayed.
Keys: Display: Description:
12 [P/YR] 12.00 Sets payments per year.
9 [I/YR] 9.00 Stores interest rate.
20 [X]P/YR] 240.00 Stores number of months.
100000 +/- PV] -100,000.00 Stores original amount of mortgage.
0 [FV] 0.00 Enters amount left to pay after 20 years.
PMT] 899.73 Calculates regular payment.

Step 2. Enter the new value for N indicating when the balloon occurs, then find FV, the amount of the balloon.

Keys: Display: Description:
[RND] PMT] 899.73 Rounds payment to two decimal places for accuracy.
5 [X]P/YR] 60.00 Stores number of payments until balloon.
FV] 88,706.74 Calculates balloon payment (add to final payment).

Step 3. Enter actual, current values for N and PV; then find the new I/YR for the discounted mortgage with balloon.

Keys: Display: Description:
[RCL] N] 42 N 18.00 Stores remaining number of payments.
79000 +/- PV] -79,000.00 Stores price of mortgage.
I/YR] 20.72 Calculates the return on this discounted mortgage.

Annual Percentage Rate for a Loan With Fees

The annual percentage rate, APR, incorporates fees usually charged when a mortgage is issued, which effectively raises the interest rate. The actual amount received by the borrower (the PV) is reduced, while the periodic payments remain the same. The APR can be calculated given the term of the mortgage (N periods), the annual interest rate (I/YR), the mortgage amount (new PV), and the amount of the fee.

Remember the cash flow sign convention: money paid out is negative; money received is positive.

Example: APR for a Loan With Fees. A borrower is charged two points for the issuance of a mortgage. (One point is equal to 1% of the mortgage amount.) If the mortgage amount is $60,000 for 30 years and the annual interest rate is 11.5% with monthly payments what APR is the borrower paying?

Set to End Mode. Press [BEG/END] if BEGIN annunciator is displayed.

Keys: Display: Description:
12 [P/YR] 12.00 Sets payments per year.
11.5 [I/YR] 11.50 Stores interest rate.
30 [X]P/YR] 360.00 Stores length of mortgage.
60000 [PV] 60,000.00 Stores original amount of mortgage.
0 [FV] 0.00 The loan will be completely paid off in 30 years.
[RCL] PV] 60,000.00 Recalls loan amount.
-2 % PV] 58,800.00 Subtracts points.
I/YR 11.76 Calculates APR, considering fees.
Example: Interest-Only Loan With Fee. A $1,000,000, 10-year, 12% (annual interest) interest-only loan has an origination fee of three points. What is the yield to the lender? Assume that monthly payments of interest are made.

Set to End mode. Press [BEG/END] if BEGIN annunciator is displayed.

Keys:

<table>
<thead>
<tr>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 [P/YR]</td>
<td>12.00</td>
</tr>
<tr>
<td>12 [I/YR]</td>
<td>12.00</td>
</tr>
<tr>
<td>10 [X P/YR]</td>
<td>120.00</td>
</tr>
<tr>
<td>1000000 [PV]</td>
<td>1,000,000.00</td>
</tr>
<tr>
<td>[/-] [FV]</td>
<td>-1,000,000.00</td>
</tr>
</tbody>
</table>

Loan With a Partial (Odd) First Period

TVM calculations apply to financial transactions where each payment period is the same length. However, situations exist where the first payment period is not the same length as the remaining periods. This first period is sometimes called an odd or partial first period.

If interest is applied to an odd first period, it is usually calculated as simple interest. So using the HP-10B to do a payment calculation with an odd first period is a two step process:

1. Calculate the amount of simple interest that accrues during the fractional first period and add it to the loan amount. This is the new PV. You must be able to calculate the length of the odd first period as a fraction of the whole period. (For example, a 15-day odd first period would be 0.5 periods assuming a whole period to be a 30-day month.)

2. Calculate the payment using the new PV, with N equal to the number of full periods. Use Begin mode if the number of days until the first payment is less than 30; otherwise use End mode.

Example. A 36-month loan for $4,500 has an annual rate of 15%. If the first monthly payment is made in 46 days, what is the monthly payment amount assuming 30-day months?

The odd first period in this example is 16 days.

Set to End mode. Press [BEG/END] if BEGIN annunciator is displayed.

Keys:

<table>
<thead>
<tr>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 [P/YR]</td>
<td>12.00</td>
</tr>
<tr>
<td>15 [I/YR]</td>
<td>15.00</td>
</tr>
<tr>
<td>12 [X]</td>
<td>1.25</td>
</tr>
<tr>
<td>16 [+] 30 [X]</td>
<td>0.67</td>
</tr>
<tr>
<td>4500 [SWAP] [%] =</td>
<td>30.00</td>
</tr>
<tr>
<td>[+] 4500 [PV]</td>
<td>4,530.00</td>
</tr>
<tr>
<td>36 [N]</td>
<td>36.00</td>
</tr>
<tr>
<td>0 [FV]</td>
<td>0.00</td>
</tr>
<tr>
<td>[PMT]</td>
<td>-157.03</td>
</tr>
</tbody>
</table>
Automobile Loan

Example. You are buying a new $14,000.00 sedan. Your down payment is $1,500 and you are going to finance the remaining $12,500. The car dealer is offering two choices for financing:

- A 3-year loan with an annual interest rate of 3.5%.
- A 3-year loan with an annual interest rate of 9.5% and a $1,000.00 rebate.

With which choice do you pay less for the car?

Set to End mode. Press **[BEG/END]** if **BEGIN** annunciator is displayed.

Calculate the first option:

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 [P/YR]</td>
<td>12.00</td>
<td>Sets payments per year.</td>
</tr>
<tr>
<td>36 N</td>
<td></td>
<td>Stores known values.</td>
</tr>
<tr>
<td>12500 [PV]</td>
<td>0.00</td>
<td>Stores first interest rate.</td>
</tr>
<tr>
<td>3.5 [I/YR]</td>
<td>3.50</td>
<td>Calculates payment.</td>
</tr>
<tr>
<td>PMT</td>
<td>-366.28</td>
<td>Calculates total interest and principal.</td>
</tr>
<tr>
<td>× RCL N ▼</td>
<td>-13,185.94</td>
<td></td>
</tr>
</tbody>
</table>

Calculate the second option:

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>11500 [PV]</td>
<td>11,500.00</td>
<td>Stores loan amount with rebate.</td>
</tr>
<tr>
<td>9.5 [I/YR]</td>
<td>9.50</td>
<td>Stores second interest rate.</td>
</tr>
<tr>
<td>PMT</td>
<td>-368.38</td>
<td>Calculates payment.</td>
</tr>
<tr>
<td>× RCL N ▼</td>
<td>-13,261.64</td>
<td>Calculates total interest and principal.</td>
</tr>
</tbody>
</table>

The first option costs slightly less.

Canadian Mortgages

In Canadian mortgages, the compounding and payment periods are not the same. Interest is compounded semi-annually while payments are made monthly. To use the TVM application in the HP-10B, you need to calculate a **Canadian mortgage factor** (which is an adjusted interest rate) to store in **I/YR**.

For additional information on interest rate conversions, see the section "Interest Rate Conversions" in chapter 5.

Example. What is the monthly payment required to fully amortize a 30-year, $30,000 Canadian mortgage if the annual interest rate is 12%?

Keys:

<table>
<thead>
<tr>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 [NOM%]</td>
<td>Stores known nominal percentage and number of compounding periods.</td>
</tr>
<tr>
<td>2 [P/YR]</td>
<td>Calculates annual effective rate.</td>
</tr>
<tr>
<td>[EFF%]</td>
<td>Sets payments per year.</td>
</tr>
<tr>
<td>12 [P/YR]</td>
<td>Calculates Canadian mortgage factor (adjusted interest rate).</td>
</tr>
<tr>
<td>[NOM%]</td>
<td>Stores other known values for mortgage.</td>
</tr>
<tr>
<td>30000 [PV]</td>
<td>Calculates monthly payment for Canadian mortgage.</td>
</tr>
<tr>
<td>0 [FV]</td>
<td>360.00</td>
</tr>
<tr>
<td>30 [xP/YR]</td>
<td>-301.92</td>
</tr>
</tbody>
</table>
What if ... TVM Calculations

One of the most valuable aspects of the HP-10B's TVM application is the case with which it handles the question “what if...” in financial calculations. For example, one of the most popular “what if...” questions is, “What if the interest rate changes to ...? How will that affect my payment?” To answer this question, once you have calculated a payment based on one interest rate, all you need to do is enter the new interest rate and recalculate PMT.

Some of the examples earlier in this manual have included some brief encounters with “what if...” questions, but a more complete example follows.

Example. You are about to sign on the dotted line for a 30-year, $735,000 mortgage, on a vacation home. The annual interest rate is 11.2%.

Part 1. What will your payments be at the end of the month?

Set to END mode. Press [BEGIN] if BEGIN annunciator is displayed.

Keys:

Display:
Description:

12 [P/YR]
12.00
Sets payments per year.

735000 [PV]
Stores known values.

11.2 [I/YR]

30 [P/YR]
0.00
Calculates payment.

0 [FV]
PMT
-7,110.88

Part 2. Your company's regular payroll is generated every other Friday. The bank agrees to automatically draw payments of $3,555.00 out of each paycheck (approximately half of what a monthly payment would be) and adjust the payment period accordingly (26 compounding periods per year). What would be the new term of the loan?

3555 [+/-] PMT
-3,555.00
Enters new payment.

26 [P/YR]
26.00
Sets payments per year for every two weeks.

514.82
Displays number of biweekly payments.

19.80
Displays years required to pay off loan.

Part 3. What if you had monthly payments as in part 1, but chose a 15-year term? What would your new payment be? What would be the total interest paid on the contract?

Keys:

Display:
Description:

12 [P/YR]
12.00
Sets payments per year.

15 [P/YR]
180.00
Stores known values.

PMT
-8,446.53
Calculates new term.

[RCL] [N] +
-1,520,374.70
Calculates payment for shorter term.

[RCL] [PV] +
-785,374.70
Displays total paid.

Savings

Saving for College Costs

Suppose you start saving now to accommodate a future series of cash outflows. An example of this is saving money for college. To determine how much you need to save each period, you must know when you'll need the money, how much you'll need, and at what interest rate you can invest your deposits.

Example. Your oldest daughter will attend college in 12 years and you are starting a fund for her education. She will need $15,000 at the beginning of each year for four years. The fund earns 9% annual interest, compounded monthly, and you plan to make monthly deposits, starting at the end of the current month. The deposits cease when she begins college. How much do you need to deposit each month?
This problem is solved in two steps. First calculate the amount you'll need when she starts college. Start with an interest rate conversion because of the monthly compounding.

\[\$15,000 \]

\[I/YR = 9\% \]

\[\text{Year 1} \quad \text{Year 2} \quad \text{Year 3} \quad \text{Year 4} \]

Keys:

- **9 [NOM%]**
 - **Display:** 9.00
 - **Description:** Stores annual nominal rate.

- **12 [P/YR]**
 - **Display:** 12.00
 - **Description:** Stores number of compounding periods used with this nominal rate.

- **[EFF%]**
 - **Display:** 9.38
 - **Description:** Calculates annual effective rate.

When compounding occurs only once per year, the effective rate and the nominal rate are the same.

\[I/YR \]

\[9.38 \]

- **Description:** Stores effective rate as annual rate.

Set to Begin mode. Press **[BEG/END]** if BEGIN annunciator is not displayed.

- **1 [P/YR]**
 - **Display:** 1.00
 - **Description:** Sets 1 payment per year.

- **15000 [PMT]**
 - **Display:** 15,000.00
 - **Description:** Stores annual withdrawal.

- **4 [N]**
 - **Display:** 4.00
 - **Description:** Stores number of withdrawals.

- **[PV]**
 - **Display:** -52,713.28
 - **Description:** Stores balance at end of four years.

Calculates amount required when your daughter starts college.

Then use that **PV** as the **FV** on the following cash flow diagram, and calculate the **PMT**.

\[\text{FV from previous calculation.} \]

\[I/YR = 9\% \]

\[\text{PMT} = ? \]

Set to End mode. Press **[BEG/END]** if BEGIN annunciator is displayed.

- **[FV]**
 - **Display:** 52,713.28
 - **Description:** Stores amount you need.

- **[PV]**
 - **Display:** 0.00
 - **Description:** Stores amount you are starting with.

- **12 [P/YR]**
 - **Display:** 12.00
 - **Description:** Sets payments per year.

- **144 [N]**
 - **Display:** 144.00
 - **Description:** Stores number of deposits.

- **9 [I/YR]**
 - **Display:** 9.00
 - **Description:** Stores interest rate.

- **[PMT]**
 - **Display:** -204.54
 - **Description:** Calculates monthly deposit required.

Gains That Go Untaxed Until Withdrawal

You can use the TVM application to calculate the future value of a tax-free or tax-deferred account. (Current tax laws and your income determine whether both interest and principal are tax-free. You can solve for either case.)
The purchasing power of that future value depends upon the inflation rate and the duration of the account.

Example. You are considering opening a tax-deferred account with a dividend rate of 8.175%. If you invest $2,000 at the beginning of each year for 35 years, how much will be in the account at retirement? How much will you have paid into the account? How much interest will you have earned? If your post-retirement tax rate is 15%, what will the after-tax future value of the account be? Assume that only the interest is taxed (assume the principal was taxed before deposit). What is the purchasing power of that amount, in today's dollars, assuming an 8% inflation rate?

Set to Begin mode. Press [BEG/END] if BEGIN annunciator is not displayed.

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 [F/YR]</td>
<td>1.00</td>
<td>Sets 1 payment per year.</td>
</tr>
<tr>
<td>35 N</td>
<td></td>
<td>Stores number of periods and interest rate.</td>
</tr>
<tr>
<td>8.175 [I/YR]</td>
<td>8.18</td>
<td></td>
</tr>
<tr>
<td>0 [PV]</td>
<td>0.00</td>
<td>Stores amount you start with.</td>
</tr>
<tr>
<td>2000 +/- [PMT]</td>
<td>-2,000.00</td>
<td>Stores amount of annual payment.</td>
</tr>
<tr>
<td>[FV]</td>
<td>387,640.45</td>
<td>Calculates amount in account at retirement.</td>
</tr>
<tr>
<td>[RCL] [PMT] X [RCL] N =</td>
<td>-70,000.00</td>
<td>Calculates amount you have paid into account by retirement.</td>
</tr>
<tr>
<td>[X] 15% =</td>
<td>47,646.07</td>
<td>Calculates taxes at 15% of interest.</td>
</tr>
<tr>
<td>+/- +/- [RCL] [FV] =</td>
<td>339,994.39</td>
<td>Calculates after-tax FV.</td>
</tr>
</tbody>
</table>

Stores after-tax future value in [FV].

| 8 [I/YR] 0 [PMT] [PV] | -22,995.36 | Calculates present-value purchasing power of after-tax [FV], assuming an 8% inflation rate. |

Value of a Taxable Retirement Account

This problem uses the TVM application to calculate the future value of a taxable retirement account that receives regular, annual payments beginning today (Begin mode). The annual tax on the interest is paid out of the account. (Assume the deposits have been taxed already.)

Example. If you invest $3,000 each year for 35 years, with dividends taxed as ordinary income, how much will you have in the account at retirement? Assume an annual dividend rate of 8.175%, a tax rate of 28%, and that payments begin today. What is the purchasing power of that amount in today's dollars, assuming 8% inflation?

Set to Begin mode. Press [BEG/END] if BEGIN annunciator is not displayed.

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 [F/YR]</td>
<td>1.00</td>
<td>Sets 1 payment per year.</td>
</tr>
<tr>
<td>35 N</td>
<td>35.00</td>
<td>Stores number of payment periods until retirement.</td>
</tr>
<tr>
<td>5.89 [I/YR]</td>
<td></td>
<td>Stores adjusted interest rate.</td>
</tr>
<tr>
<td>0 [PV]</td>
<td>0.00</td>
<td>Stores amount you are starting with.</td>
</tr>
<tr>
<td>3000 +/- [PMT]</td>
<td>-3,000.00</td>
<td>Stores amount of annual payment.</td>
</tr>
</tbody>
</table>
Cash Flow Examples

Wrap-Around Mortgages

A wrap-around mortgage is a combination of refinancing a mortgage and borrowing against real estate equity. Usually the two unknown quantities in the wrapped mortgage are the new payment and the rate of return to the lender. To arrive at a solution, you need to use both the TVM and the cash flow applications.

Example. You have 82 monthly payments of $754 left on your 8% mortgage, leaving a remaining balance of $47,510.22. You would like to wrap that mortgage and borrow an additional $35,000 for another investment. You find a lender who is willing to "wrap" an $82,510.22 mortgage at 9.5% for 15 years. What are your new payments and what return is the lender getting on this wrap-around mortgage?

The payment calculation is a straightforward TVM payment calculation using the new amount as the PV.

Set to End mode. Press [BEG/END] if BEGIN annunciator is displayed.

<table>
<thead>
<tr>
<th>Keys:</th>
<th>Display:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>[CLEAR ALL]</td>
<td>0.00</td>
<td>Clears all registers.</td>
</tr>
<tr>
<td>12 [P/YR]</td>
<td>12.00</td>
<td>Sets payments per year.</td>
</tr>
<tr>
<td>82510.22 [FV]</td>
<td>82,510.22</td>
<td>Stores loan amount on which your new payment is calculated.</td>
</tr>
</tbody>
</table>

When you group the above cash flows, you’ll find that:

\[
\begin{align*}
CF_0 &= 47,510.22 - 82,510.22 = -35,000.00 \\
CF_1 &= 861.59 - 754.00 = 107.59 \\
N_1 &= 82 \\
CF_2 &= 861.59 \\
N_2 &= 180 - 82 = 98
\end{align*}
\]
Net Future Value

The net future value can be calculated by using the TVM keys to slide the net present value (NPV) forward on the cash flow diagram.

Example: Value of a Fund. You have made the following deposits over the past two years into a money market fund earning 8.8%. What is the current balance of the account?

Stores annual interest rate.
Calculates net present value (NPV), automatically stored as PV.
Stores known values.
Calculates net future value.
Assistance, Batteries, and Service

We at Hewlett-Packard are committed to providing you with ongoing support. You can obtain answers to questions about using your calculator from our Calculator Support department.

Please read “Answers to Common Questions” before contacting us. Our experience has shown that many of our customers have similar questions about our products. If you don’t find an answer to your question, you can contact us using the address or phone number listed on the inside back cover.

Answers to Common Questions

Q: I’m not sure if the calculator is malfunctioning or if I’m doing something incorrectly. How can I determine if the calculator is operating properly?

A: The diagnostic self-test is described on page 121.

Q: My numbers contain commas instead of periods as decimal points. How do I restore the periods?

A: Press (page 28).

Q: How do I change the number of decimal places that the HP-10B displays?

A: Press and the number of decimal places that you want (page 27).

Q: What does an “E” in a number (for example, 2.51E-13) mean?

A: Exponent of ten (for example, 2.51×10^{-13}). Refer to “Scientific and Engineering Notation” on page 27.

Q: Why do I get a wrong answer or the no Solution message when using TVM?

A: Be sure to enter a value for all five TVM values before you solve for the fifth, even if one of the values is zero. (Don’t forget to store a zero for [FV] if you completely pay off a loan.) Clearing all the registers ([CLEAR ALL]) before entering your known values accomplishes the same thing. Check to see that the calculator is in the appropriate payment mode (Begin or End mode) and that P/YR is set correctly.

Q: How can I change the sign of a number in a list of cash flows?

A: You must replace the cash flow entry. “Viewing and Replacing Cash Flows” is discussed on page 79.

Q: What does PEND in the display mean?

A: An arithmetic operation is pending (in progress).

Q: What does : in the display mean?

A: The (INPUT) key has been pressed, or two values have been returned (page 25).

Q: Why is IRR/YR larger than I expected?

A: This is IRR per year. To see a periodic IRR, divide IRR/YR by P/YR.

Environmental Limits

To maintain product reliability, you should avoid getting the calculator wet and observe the following temperature and humidity limits:

- Operating temperature: 0° to 45°C (32° to 113°F).
- Storage temperature: -20° to 65°C (-4° to 149°F).
- Operating and storage humidity: 90% relative humidity at 40°C (104°F) maximum.
Noise Declaration. In the operator position under normal operation (per ISO 7779): LpA < 70dB.

Power and Batteries

The calculator is powered by three button cell batteries. Expected battery life depends on how the calculator is used and the chemical content of the battery.

Use only fresh button-cell batteries. Do not use rechargeable batteries.

Low Power Annunciator

When the low battery annunciator (▁▁) comes on, you should replace the batteries as soon as possible.

If the battery annunciator is on and the display dims, you may lose data. The ALL CLR message is displayed if data is lost due to low power.

Battery Specifications

Your HP calculator requires three 1.5-volt, button-cell batteries. We recommend using either alkaline or silver-oxide type batteries. Do not use rechargeable batteries. Use batteries from the following list, or use another manufacturer’s equivalent.

<table>
<thead>
<tr>
<th>Alkaline</th>
<th>Silver Oxide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panasonic LR44</td>
<td>Panasonic SR44W or SP357</td>
</tr>
<tr>
<td>Eveready A76</td>
<td>Eveready 357</td>
</tr>
<tr>
<td>Duracell LR44</td>
<td>RAY-O-VAC 357</td>
</tr>
<tr>
<td>Varta V13GA</td>
<td>Varta V357</td>
</tr>
<tr>
<td>Kodak KA76</td>
<td>Toshiba LR44</td>
</tr>
</tbody>
</table>

Installing Batteries

1. Have three fresh button-cell batteries at hand. Only touch batteries by their edges. Wipe each battery with a lint-free cloth to remove dirt and oil.

2. Make sure the calculator is off. You will lose memory if the batteries are removed when the calculator is on. Do not press [E] again until the entire procedure for changing batteries is completed.

3. Hold the calculator as shown. To remove the battery-compartment door, press down and outward on it until it slides off (away from the center).

4. Turn the calculator over and shake the batteries out.

Do not mutilate, puncture, or dispose of batteries in fire. The batteries can burst or explode, releasing hazardous chemicals.

5. Hold the calculator as shown and stack the batteries in the battery compartment. Orient the batteries according to the diagram inside the battery compartment. Be sure the raised and flat ends match the diagram.
6. Slide the tab of the battery-compartment door back into the slot in the calculator case.

Determining if the Calculator Requires Service

Use these guidelines to determine if the calculator requires service. If these procedures confirm that the calculator is not functioning properly, read the section “If the Calculator Requires Service” on page 124.

- **The calculator won’t turn on (nothing is in the display):**
 1. Reset the calculator. Hold down the `(` key and press ` PV` at the same time. It may be necessary to repeat the reset keystrokes several times.
 2. Erase memory. Press and hold down `(`, then press and hold down both `[N]` and `[t]`. Memory is cleared and the ALL CLR message is displayed when you release all three keys.
 3. If the calculator fails to respond after steps 1 or 2, replace the batteries (page 119).
 4. If the calculator fails to respond after step 3, remove the batteries (page 119) and lightly press a coin against both calculator battery contacts. Put the batteries back in and turn on the calculator. It should display ALL CLR.

If steps 1 through 4 fail to restore calculator operation, it requires service.

- **The calculator doesn’t respond to keystrokes (nothing happens when you press the keys):**
 1. Reset the calculator (see step 1 above).
 2. Erase memory (see step 2 above).
 3. If the calculator fails to respond after steps 1 and 2, remove the batteries (page 119) and lightly press a coin against both calculator battery contacts. Put the batteries back in and turn on the calculator. It should display ALL CLR.

If steps 1 through 3 fail to restore calculator function, the calculator requires service.

- **The calculator responds to keystrokes but you suspect that it is malfunctioning:**
 1. Do the self-test (described below). If the calculator fails the self-test, it requires service.
 2. If the calculator passes the self-test, it is likely that you’ve made a mistake in operating the calculator. Try rereading portions of the manual, and check “Answers to Common Questions” on page 116.
 3. Contact the Calculator Support department. The address and phone number are listed on the inside back cover.

Confirming Calculator Operation — the Self-Test

If the display can be turned on, but it appears that the calculator is not operating properly, you can do a diagnostic self-test. To run the self-test:

1. First, hold down the `(` key, then press `[FMT]` at the same time.
2. Press any key four times, and watch the display as various patterns are displayed. After pressing the key four times, the calculator displays the copyright message COPr. HP 1987 momentarily, and then the message 01. This indicates the calculator is ready for the key test.
3. Starting at the upper left corner (\(\text{N}\)) and moving from left to right, press each key in the top row. Then, moving left to right, press each key in the second row, third row, etc., until you've pressed each key.
 - If you press the keys in the proper order, and they are functioning properly, the calculator displays two-digit numbers. (The calculator is counting the keys using hexadecimal base.)
 - If you press a key out of order, or if a key isn’t functioning properly, the next keystroke displays 10 - FAIL, followed by a one-digit number. If you received the message because you pressed a key out of order, you should reset the calculator (hold down [C] and press [PV]) and start the self-test over. If you pressed the keys in order, but got this message, the calculator requires service.

4. When the keyboard test has been completed, the calculator displays a message:
 - The calculator displays 10 - Good if it passed the self-test.
 - The calculator displays 10 - FAIL, followed by a one-digit hexadecimal number 1 through F, if it failed the self-test. If the calculator failed the self-test, it requires service (page 124). Include a copy of the fail message with the calculator when you ship it for service.

5. If the calculator failed the self-test, rerun the test to verify the results.

6. To exit the self-test, reset the calculator (hold down [C] and press [PV]).

To start a continuous self-test (like the one performed at the factory), hold down [C] then press [PV]. This test displays various patterns and the copyright message, then automatically repeats. The test continues until you press [C].

Limited One-Year Warranty

What Is Covered

The calculator (except for the batteries, or damage caused by the batteries) is warranted by Hewlett-Packard against defects in materials and workmanship for one year from the date of original purchase. If you sell your unit or give it as a gift, the warranty is automatically transferred to the new owner and remains in effect for the original one-year period. During the warranty period, we will repair or, at our option, replace at no charge a product that proves to be defective, provided you return the product, shipping prepaid, to a Hewlett-Packard service center. (Replacement may be with a newer model of equivalent or better functionality.)

This warranty gives you specific legal rights, and you may also have other rights that vary from state to state, province to province, or country to country.

What Is Not Covered

Batteries, and damage caused by the batteries, are not covered by the Hewlett-Packard warranty. Check with the battery manufacturer about battery and battery leakage warranties.

This warranty does not apply if the product has been damaged by accident or misuse or as the result of service or modification by other than an authorized Hewlett-Packard service center.

No other express warranty is given. The repair or replacement of a product is your exclusive remedy. ANY OTHER IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS IS LIMITED TO THE ONE-YEAR DURATION OF THIS WRITTEN WARRANTY. Some states, provinces, or countries do not allow limitations on how long an implied warranty lasts, so the above limitation may not apply to you. IN NO EVENT SHALL HEWLETT-PACKARD COMPANY BE LIABLE FOR CONSEQUENTIAL DAMAGES. Some states, provinces, or countries do not allow the exclusion or limitation of incidental or consequential damages, so the above limitation or exclusion may not apply to you.
Products are sold on the basis of specifications applicable at the time of manufacture. Hewlett-Packard shall have no obligation to modify or update products, once sold.

Consumer Transactions in the United Kingdom

This warranty shall not apply to consumer transactions and shall not affect the statutory rights of a consumer. In relation to such transactions, the rights and obligations of Seller and Buyer shall be determined by statute.

If the Calculator Requires Service

Hewlett-Packard maintains service centers in many countries. These centers will repair a calculator, or replace it with the same model or one of equal or greater value, whether it is under warranty or not. There is a service charge for service after the warranty period. Calculators normally are serviced and reshipped within five working days.

Obtaining Service

- **In the United States:** Send the calculator to the Corvallis Service Center listed on the inside of the back cover.

- **In Europe:** Contact your Hewlett-Packard sales office or dealer, or Hewlett-Packard's European headquarters for the location of the nearest service center. *Do not ship the calculator for service without first contacting a Hewlett-Packard office.*

 Hewlett-Packard S.A.
 150, Route du Nant-d'Avril
 P.O. Box CH 1217 Meyrin 2
 Geneva, Switzerland
 Telephone: (022) 780 81 11

- **In other countries:** Contact your Hewlett-Packard sales office or dealer or write to the Corvallis Service Center (listed on the inside of the back cover) for the location of other service centers. If local service is unavailable, you can ship the calculator to the Corvallis Service Center for repair.

 All shipping, reimportation arrangements, and customs costs are your responsibility.

Service Charge

There is a standard repair charge for out-of-warranty service. The Corvallis Service Center (listed on the inside of the back cover) can tell you how much this charge is. The full charge is subject to the customer's local sales or value-added tax wherever applicable.

Calculator products damaged by accident or misuse are not covered by the fixed service charges. In these cases, charges are individually determined based on time and material.

Shipping Instructions

If your calculator requires service, ship it to the nearest authorized service center or collection point.

- Include your return address and description of the problem.
- Include proof of purchase date if the warranty has not expired.
- Include a purchase order, check, or credit card number plus expiration date (VISA or MasterCard) to cover the standard repair charge.
- Ship the calculator in adequate protective packaging to prevent damage. Such damage is not covered by the warranty, so we recommend that you insure the shipment.
- Pay the shipping charges for delivery to the Corvallis Service Center, whether or not the calculator is under warranty.
Warranty on Service

Service is warranted against defects in materials and workmanship for 90 days from the date of service.

Service Agreements

In the U.S., a support agreement is available for repair and service. Refer to the form in the front of the manual. For additional information, contact the Corvallis Service Center (see the inside of the back cover).

Regulatory Information

U.S.A. The HP-10B generates and uses radio frequency energy and may interfere with radio and television reception. The calculator complies with the limits for a Class B computing device as specified in Subpart J of Part 15 of FCC Rules, which provide reasonable protection against such interference in a residential installation. In the unlikely event that there is interference to radio or television reception (which can be determined by turning the HP-10B off and on or by removing the batteries), try the following:

- Reorienting the receiving antenna.
- Relocating the calculator with respect to the receiver.

For more information, consult your dealer, an experienced radio/television technician, or the following booklet, prepared by the Federal Communications Commission: How to Identify and Resolve Radio-TV Interference Problems. This booklet is available from the U.S. Government Printing Office, Washington, D.C. 20402, Stock Number 004-000-00345-4. At the first printing of this manual, the telephone number was (202) 783-3238.

West Germany. The HP-10B complies with VFG 1046/84, VDE 0871B, and similar noninterference standards. If you use equipment that is not authorized by Hewlett-Packard, that system configuration has to comply with the requirements of Paragraph 2 of the German Federal Gazette, Order (VFG) 1046/84, dated December 14, 1984.

More About Calculations

IRR/YR Calculations

The calculator determines IRR/YR for a set of cash flows using mathematical formulas that “search” for the answer. The process finds a solution by estimating an answer and then using that estimate to do another calculation—this is called an iterative process.

In most cases, the calculator finds the desired answer, since there is usually only one solution to the calculation. However, calculating IRR/YR for certain sets of cash flows is more complex. There may be more than one (or no) mathematical solution to the problem. In these cases, the calculator displays a message to help you interpret what has happened.

Possible Outcomes of Calculating IRR/YR

These are the possible outcomes of an IRR/YR calculation:

- **Case 1.** The calculator displays a positive answer. This is the only positive answer. However, one or more negative answers may exist.

- **Case 2.** The calculator finds a negative answer but a single positive answer also exists. It displays: POS Irr ALSO. To see the negative answer, press [Clear] to clear the message. To search for the positive answer, you must input a guess. (Refer to “Entering a Guess for IRR/YR,” below). There might also be additional negative answers.

- **Case 3.** The calculator displays a negative answer and no message. This is the only answer.

- **Case 4.** The calculator displays the message: Error - Soln. This indicates that the calculation is very complex. It might involve more than one positive or negative answer, or there may be no solution. To continue the calculation, you must store a guess (see below).
Case 5. The calculator displays: no Solution. There is no answer. This situation might be the result of an error, such as a mistake in keying in the cash flows. A common mistake that results in this message is putting the wrong sign on a cash flow. A valid cash-flow series for an IRR/YR calculation must have at least one positive and one negative cash flow.

Halting and Restarting IRR/YR

The search for IRR/YR may take a relatively long time. You can halt the calculation at any time by pressing the C key. The message IntErruPteEd is displayed. Pressing C now displays the current estimate for IRR/YR. You can resume the calculation by:

- Pressing [STO] [IRR/YR] while the current estimate is displayed in the calculator line. This continues the calculation from where it left off.
- Storing a guess for IRR/YR, discussed below.

Entering a Guess for IRR/YR

To enter a guess, key in an estimate of IRR/YR and then press [STO] [IRR/YR]. You can enter a guess for IRR/YR at these times:

- Before beginning the calculation. A fairly accurate guess can reduce the time required to calculate an answer and reduce the chance of the calculator solving for an undesirable negative solution.
- After you’ve interrupted the calculation.
- After the calculator has halted the calculation due to any of the aforementioned cases. However, for cases 3 and 5, no other solutions will be found.

When calculating IRR/YR using a guess, the calculation halts when it finds an answer. However, there may be additional positive or negative answers, or no true solution at all. You can continue searching for another solution by halting the calculation and entering a different guess.

One way to obtain a good guess for IRR/YR is to calculate the NPV for various interest rates. Since IRR/YR is the interest rate at which NPV equals zero, the best estimate of IRR/YR is the interest rate that yields the value for NPV closest to zero.

Effect of Using Σ− to Correct Data

The HP-10B stores the statistical numbers in an “accumulated” fashion. It doesn’t store every number that you enter, but rather it performs intermediate calculations when you press the Σ+ key. The Σ− key performs the opposite intermediate calculations to effectively remove a number or pair of numbers from the stored results.

When correcting statistical data, Σ− does not delete rounding errors that may occur during the intermediate calculations done by Σ+. Thus, subsequent results for corrected data may be different than for data that was entered originally without having to use Σ−. However, the difference will not be serious unless the incorrect data has a very large magnitude compared with the correct values; in this case, you may want to clear the statistical registers and re-enter the data.

Range of Numbers

The largest positive and negative numbers available on the calculator are ±9.9999999999 x 10^499; the smallest positive and negative numbers available are ±1 x 10^-499. Underflow displays a zero. Refer to the message OFLO in “Messages” following this appendix.

Equations

Margin and Markup Calculations

\[
MAR = \left(\frac{PRC - COST}{PRC} \right) \times 100
\]

\[
MU = \left(\frac{PRC - COST}{COST} \right) \times 100
\]
Time Value of Money (TVM)

Payment Mode Factor: S = 0 for End mode; 1 for Begin mode.

\[i \% = \frac{I/YR}{P/YR} \]

\[0 = PV \times \left(1 + \frac{i\% \times S}{100} \right) \times PMT \times \frac{1 - \left(1 + \frac{i\%}{100} \right)^{-N}}{\frac{i\%}{100}} \]

\[+ FV \times \left(1 + \frac{i\%}{100} \right)^{-N} \]

Amortization

\[\Sigma INT = \text{accumulated interest} \]

\[\Sigma PRN = \text{accumulated principal} \]

\[i = \text{periodic interest rate} \]

\[BAL \text{ is initially } PV \text{ rounded to the current display setting.} \]

\[PMT \text{ is initially } PMT \text{ rounded to the current display setting.} \]

\[i = \frac{I/YR}{P/YR \times 100} \]

For each payment amortized:

\[INT' = BAL \times i \] (\(INT' \) is rounded to the current display setting; \(INT' = 0 \) for period 0 in Begin mode.)

\[INT = INT' \] (with sign of PMT)

\[PRN = PMT + INT' \]

\[BAL_{new} = BAL_{old} + PRN \]

\[\Sigma INT_{new} = \Sigma INT_{old} + INT \]

\[\Sigma PRN_{new} = \Sigma PRN_{old} + PRN \]

Interest Rate Conversions

\[EFF \% = \left(1 + \frac{NOM \%}{100 \times P/YR} \right)^{P/YR} - 1 \times 100 \]

Cash-Flow Calculations

\[i\% = \text{periodic interest rate} \]

\[j = \text{the group number of the cash flow.} \]

\[CF_j = \text{amount of the cash flow for group } j. \]

\[n_j = \text{number of times the cash flow occurs for group } j. \]

\[k = \text{the group number of the last group of cash flows.} \]

\[N_j = \sum_{1 \leq l < j} n_l = \text{total number of cash flows prior to group } j. \]

\[NPV = CF_o + \sum_{j=1}^{k} CF_j \times \left(\frac{1 - \left(1 + \frac{i\%}{100} \right)^{-n_j}}{\frac{i\%}{100}} \right) \times \left(1 + \frac{i\%}{100} \right)^{-N_j} \]

When \(NPV = 0 \), the solution for \(i\% \) is the periodic internal rate of return.
Statistics

\[\bar{X} = \frac{\Sigma x}{n}, \quad \bar{Y} = \frac{\Sigma y}{n}, \quad \bar{X}_y = \frac{\Sigma xy}{\Sigma y} \]

\[S_x = \sqrt{\frac{\Sigma x^2 - \left(\frac{\Sigma x}{n}\right)^2}{n - 1}} \]

\[S_y = \sqrt{\frac{\Sigma y^2 - \left(\frac{\Sigma y}{n}\right)^2}{n - 1}} \]

\[\sigma_x = \sqrt{\frac{\Sigma x^2 - \left(\frac{\Sigma x}{n}\right)^2}{n}} \quad \sigma_y = \sqrt{\frac{\Sigma y^2 - \left(\frac{\Sigma y}{n}\right)^2}{n}} \]

\[r = \frac{\Sigma xy - \frac{\Sigma x \Sigma y}{n}}{\sqrt{\left(\frac{\Sigma x^2 - \left(\frac{\Sigma x}{n}\right)^2}{n}\right) \left(\frac{\Sigma y^2 - \left(\frac{\Sigma y}{n}\right)^2}{n}\right)}} \]

\[m = \frac{\Sigma xy - \frac{\Sigma x \Sigma y}{n}}{\Sigma x^2 - \left(\frac{\Sigma x}{n}\right)^2} \]

\[b = \bar{Y} - m \bar{X}, \quad \hat{x} = \frac{y - b}{m}, \quad \hat{y} = mx + b \]

Messages

Press [C] or [+] to clear a message from the display.

ALL CLR
(All Clear). Memory has been erased (page 23).

bAL
(Balance). Balance in an amortization schedule (page 67).

CF<j>
(Cash Flow). Cash flow number (page 78).

COPr. HP 1987
(Copyright HP 1987). Copyright is displayed during self-test.

Error - Func
(Error - Function).
- Attempt to divide by zero.
- Attempt to calculate n! with n < 0 or n a noninteger.
- Attempt to calculate the logarithm of zero or a negative number.
- Attempt to calculate 0^0 or 0 raised to a negative power.
- Attempt to raise a negative number to a noninteger power.
- Attempt to calculate the square root of a negative number.

Error - Full
(Error - Full). Attempt to calculate an expression with more than five pending operations or attempt to enter more than 15 cash flow groups.

Error - Int
(Error - Interest). Periodic interest percent is \(\geq -100\% \).

Error - n
(Error - n). Attempt to solve for I/YR with \(N \leq 0.99999 \) or \(\geq 1E10 \).
OFLO
(Overflow). The magnitude of a result is too large for the calculator to handle. Message is displayed for a moment, then the overflow result is returned (±9.999999999999E499). The overflow message is also displayed if an intermediate TVM or cashflow calculation results in an overflow condition. In this case, the message remains in the display.

PER <P1> - <P2>
(Periods starting-ending). Displays beginning and ending payments for an amortization schedule (page 67).

POS IrR ALSO
(Positive Internal Rate of Return Also). An IRR/YR calculation produced a negative solution. A positive solution also exists (page 127).

Prin
(Principal). Principal in an amortization schedule (page 67).

running
(Running). A calculation is in process.

UFLO
(Underflow). An intermediate result in TVM is too small for the HP-10B to process.

<nnn> P_ Yr
(<nnn> Payments per Year). Temporary message showing number of payments per year. Displayed for a moment when you press [CLEAR ALL].

10 - FAIL n
(HP-10B Fail). The self-test failed; n is the fail code (page 121).

10 - Good
(HP-10B Good). The self-test is complete (page 121).
Index

Special Characters

†, 21
‡, 21
§, 21
‖, 21
←, 22
↑, 28
→, 28
% , 31, 45
%CHG, 32
■, 24
□, 26, 40
]/, 26, 40, 41
±, 40
√, 41
[, 41
], 41
±, 85
±, 85
x, , 88
x, 88
x , 88
x, 88
∑x, 85
∑y, 85
∑x², 85
∑y², 85
∑xy, 85
xP/YR, 52
#, 22

Auto increment, 67
Automatic constant, 35
Automobile loan, 104
Average, 88

B

Backspace, 22
bAL, 67
Balance, 43, 67
Balloon payment, 43, 56
Basics at a glance, 10
Batteries, 118
changing, 118
BEGIN, 24
BEGIN/END, 52
Begin, 13
Begin mode, 53
Borrowing equity, 112
Brightness of display, 21
Buy out value, 62

C

c, 21
Canadian mortgage, 105
Capitalized value, 62
Car loan, 53, 104
Cash flow
calculations, 75
clearing, 75
diagrams, 43
discount, 77
tening, 78
equations, 131
group, 77
mistakes, 79
problems, 47
replacing, 79
viewing, 79
Cash paid out, 44
Cash received, 44

[CF], 78
Chain calculations, 22
Changing batteries, 118
 [%CHG], 26
Clear display, 10
Clear statistics, 20
Clearing, 23
Clearing messages, 23
[CLEAR ALL], 53
[CL 2], 85
Colon, 24
Comma, 28
Comparing investments, 71
Compound interest, 45, 46
Compounding
annual, 60
daily, 72
monthly, 72
periods, 71
quarterly, 72
Constant, 12, 35
Continuous compounding, 98
Continuous memory, 21
Correcting statistics, 87
Correlation coefficient, 88
Cost, 11
Cost of no discount, 96
Cost per unit, 95
[CST], 33
Cursor, 23

D

Daily compounding, 72
Decimal point, 26, 28
Digit separator, 28
Digits, 26
Dim display, 21
Discounted contract, 80
Discounted mortgage, 99
[DISP], 27, 58
[DISP] 7, 28
Display all digits, 28
Display format, 21
Dot, 28
Down payment, 53, 55

E
E, 27
(E), 27
(EEF%), 51, 71
Effective
 annual rate, 47
 rate, 71
Effective rate, 16
End, 13
End mode, 53
Entering a Guess, 127
Equations, 129
 amortization, 130
 cash flow, 131
 interest rate conversion, 131
 margin and markup, 129
 statistics, 132
 TVM, 130
Equity, borrow against, 112
Erase, 22, 23
Erase memory, 120
Error messages, 133
Estimate for IRR%, 127
Estimate of x, 88
Estimate of y, 88
Exponents, 27

F
Factorial, 40
Fees up front, 101
FIX, 26
Forecasting based on history, 95
Format the display, 26
Future value, 43, 48
FV, 43, 48, 52

G
Grouping cash flows, 77
Guess for IRR/YR, 127

H
Help for questions, 116
History based forecasting, 95
Home mortgage, 55

I
Individual retirement account, 60
Initial cash flow, 77
INPUT, 25
Input annunciator, 24
Installing batteries, 118
Int, 67
Interest
 compound, 45, 52
 simple, 45
Interest conversion at a glance, 16
Interest rate conversion, 71
 equations, 131
Interest with fees, 101
Interest-only loan, 102
Intermediate result, 41
Internal precision, 28
Internal rate of return,
 17, 49, 75, 83
Investment comparisons, 71
IRA, 60
IRR, 49
IRR/YR, 77
IRR/YR, 49, 75
IRR/YR at a glance, 18
IRR/YR Calculations, 127
/I/YR, 48, 52

K, L
[K], 35
Lease, 62
 advance payments, 63
 Linear regression, 85, 91
[LN], 40
Loan, with fees, 101
Loans, 53
 interest only, 102
 number of payments, 52
 odd first payment, 102

M
[M+], 35, 37
M register, 29, 37, 35
Malfunction, 116
[MAR], 33
Margin, 11, 33
Markup, 11, 33
Maturity value, 43
Mean, 88
 weighted, 94
Memory, 29
 clearing, 23
Memory keys at a glance, 12
Messages, 29, 133
Mortgage
 Canadian, 105
 discounted, 99
 premium, 99
 wrap-around, 112
[MU], 33
Mutual fund, 48, 49

N
[n], 40
[N], 48, 52
n, 85
Natural logarithm, 40
Negative
cash flows, 44
 numbers, 22
 sign, 13
Net future value, 114
Net present value, 17, 49, 80
Netted value, 82
[N], 78
[NOM%], 51, 71
Nominal
 annual rate, 47
 rate, 71
Nominal rate, 16
NPV, 77
NPV, 49, 75
NPV at a glance, 18

O
Odd first payment, 102
[OFF], 21
[ON], 21
One payment per year, 58
One-number functions, 25
One-variable statistics, 86
Option to buy, 62

P
Parentheses, 41
Partial first payment, 102
Payments, 48, 52
PEND, 24
Percent, 11, 31
 change, 32
Percent at a glance, 11
Period, 26, 28
Periodic rate, 47
Periods, 48
[PMT], 48, 52
Population standard deviation, 88
Positive cash flows, 44
[PRC], 33
Premium mortgage, 99

138 Index

Index 139
Present value, 48
Price, 11
Pnl, 67
Principal, 45, 67
Principal reduction, 66
FV, 48, 52
P/YR, 51, 52, 71

Q
Questions, 116
Quick reference, 10

R
Range of numbers, 129
[RC], 33, 35, 38
Recall, 38
Recall memory, 52
Reciprocal, 40
Register, 12
Register labels, 85
Registers, 29
Remaining amount, 43
Reset, 24, 120
Residual, 43
value, 62
Retirement account, 111
[RM], 35, 37
[RND], 28
Rounding, 28
errors, 58

S
Sample standard deviation, 89
Saving for college, 107
Savings account, 58
Scientific notation, 27
Self-test, 121
Selling price, 33
Service, 124
Setting a sales price, 95
Shift key, 10, 24
Short term investment, 75
Sign
change, 51
conversion, 45
Simple interest, 45, 97
Slope, 88
Square root, 26, 40
Sx, Sy, 88
Statistics, 85
clearing, 85
corrections, 129
equations, 132
forecasting, 91
limit of values, 86
linear estimation, 85, 91
linear forecasting, 85
linear regression, 85, 91
mean, 85, 89
memory, 85
mistakes, 87
one-variable, 85
population standard deviation, 89
z, 88
sample standard deviation, 89
standard deviation, 85
summation, 89
SWAP, 88
two-variable, 85
weighted mean, 85
Statistics at a glance, 19
Statistics, weighted mean, 94
Status, 24
STO, 35, 38
Stock investment, 75
Store, 38
Subtract percent, 31
Summation statistics, 85
Summed value, 82
SWAP, 25

T
Taxable retirement account, 111
Tax-deferred account, 110
Tax-free account, 110
3 Key Memory, 35
Time out, 21
Trailing zeros, 28
Turn off, 21
Turn on, 21
TVM, 14
equations, 130
problems, 47
TVM at a glance, 13
Two-number functions, 26
Two-variable statistics, 86

U, V
Uneven cash flows, 80
Value of a fund, 114
Viewing cash flows, 79

W
Warranty, 123
Weighted mean, 94
What if . . ., 14, 106
What if . . . at a glance, 14
Won't turn on, 120
Wrap-around mortgage, 112

Y
Yellow shift key, 21
Yield, 83
y-intercept, 88